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Welcome

Due to the multivariate character of many econometric topics, matrix algebra is a commonly
used tool in modern econometrics. It provides a powerful and efficient framework for representing
and manipulating systems of linear equations. This short lecture note series provides a brief
introduction to the most relevant matrix algebra concepts for econometricians and their
implementation in R.

To learn R or refresh your skills, please check out my tutorial Getting Started With R.

Accompanying R scripts

All R codes of the different sections can be found here:

• matrix-sec1.R
• matrix-sec2.R
• matrix-sec3.R
• matrix-sec4.R

Comments

Feedback is welcome. If you notice any typos or issues, please report them on GitHub or email
me at sven.otto@uni-koeln.de.
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1 Basic definitions

Let’s start with some basic definitions and specific examples.

1.1 Scalar, vector, and matrix

A scalar a is a single real number. We write a ∈ R.

A vector aaa of length k is a k × 1 list of real numbers

aaa =


a1
a2
...

ak

 .

By default, when we refer to a vector, we always mean a column vector. We write aaa ∈ Rk. The
value ai is called i-th entry or i-th component of aaa. A scalar is a vector of length 1. A row
vector of length k is written as bbb = (b1, . . . , bk).

A matrix AAA of order k × m is a rectangular array of real numbers

AAA =


a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
...

ak1 ak2 · · · akm


with k rows and m columns. We write AAA ∈ Rk×m. The value aij is called (i, j)-th entry or
(i, j)-th component of AAA. We also use the notation (AAA)i,j to denote the (i, j)-th entry. A vector
of length k is a k × 1 matrix. A row vector of length k is a 1 × k matrix. A scalar is a matrix
of order 1 × 1.

We may describe a matrix AAA by its column or row vectors as

AAA =
(
aaa1 aaa2 . . . aaam

)
=

ααα1
...

αααk

 ,
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where

aaai =

a1i
...

aki


is the i-th column of AAA and αααi = (ai1, . . . , aim) is the i-th row.

1.2 Some specific matrices

A matrix is called square matrix if the numbers of rows and columns coincide (i.e., k = m).

BBB =
(

1 2
3 4

)
is a square matrix. A square matrix is called diagonal matrix if all off-diagonal elements are
zero.

CCC =
(

1 0
0 4

)
is a diagonal matrix. We also write CCC = diag(1, 4). A square matrix is called upper triangular
if all elements below the main diagonal are zero, and lower triangular if all elements above
the main diagonal are zero. Examples of an upper triangular matrix DDD and a lower triangular
matrix EEE are

DDD =
(

1 2
0 4

)
, EEE =

(
1 0
3 4

)
.

The k × k diagonal matrix

IIIk =


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

 = diag(1, . . . , 1)

is called identity matrix of order k. The k × m matrix

000k×m =

0 · · · 0
... . . . ...
0 · · · 0


is called zero matrix. The zero vector of length k is

000k =

0
...
0

 .

If the order becomes clear from the context, we omit the indices and write III for the identity
matrix and 000 for the zero matrix or zero vector.
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1.3 Transposition

The transpose AAA′ of the matrix AAA is obtained by flipping rows and columns on the main
diagonal:

AAA′ =


a11 a21 · · · ak1
a12 a22 · · · ak2
...

...
...

a1m a2m · · · akm

 .

If AAA is a matrix of order k × m, then AAA′ is a matrix of order m × k. Example:

AAA =

1 2
4 5
7 8

 ⇒ AAA′ =
(

1 4 7
2 5 8

)

The definition implies that transposing twice produces the original matrix:

(AAA′)′ = AAA.

The transpose of a (column) vector is a row vector:

aaa′ = (a1, . . . , ak)

A symmetric matrix is a square matrix AAA with AAA′ = AAA. An example of a symmetric matrix
is

AAA =
(

1 2
2 4

)
.

1.4 Matrices in R

Let’s define some matrices in R:

A = matrix(c(1,4,7,2,5,8), nrow = 3, ncol = 2)
A

[,1] [,2]
[1,] 1 2
[2,] 4 5
[3,] 7 8
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t(A) #transpose of A

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8

A[3,2] #the (3,2)-entry of A

[1] 8

B = matrix(c(1,2,2,4), nrow = 2, ncol = 2) # another matrix
all(B == t(B)) #check whether B is symmetric

[1] TRUE

diag(c(1,4)) #diagonal matrix

[,1] [,2]
[1,] 1 0
[2,] 0 4

diag(1, nrow = 3) #identity matrix

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

matrix(0, nrow=2, ncol=5) #matrix of zeros

[,1] [,2] [,3] [,4] [,5]
[1,] 0 0 0 0 0
[2,] 0 0 0 0 0

dim(A) #number of rows and columns

[1] 3 2
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2 Sums and Products

2.1 Matrix summation

Let AAA and BBB both be matrices of order k × m. Their sum is defined componentwise:

AAA + BBB =


a11 + b11 a12 + b12 · · · a1m + b1m

a21 + b21 a22 + b22 · · · a2m + b2m
...

...
...

ak1 + bk1 ak2 + bk2 · · · akm + bkm

 .

Only two matrices of the same order can be added. Example:

AAA =

2 0
1 5
3 2

 , BBB =

−1 1
7 1

−5 2

 , AAA + BBB =

 1 1
8 6

−2 4

 .

The matrix summation satisfies the following rules:

(i) AAA + BBB = BBB + AAA (commutativity)
(ii) (AAA + BBB) + CCC = AAA + (BBB + CCC) (associativity)
(iii) AAA + 000 = AAA (identity element)
(iv) (AAA + BBB)′ = AAA′ + BBB′ (transposition)

2.2 Scalar-matrix multiplication

The product of a k × m matrix AAA with a scalar λ ∈ R is defined componentwise:

λAAA =


λa11 λa12 · · · λa1n

λa21 λa22 · · · λa2n
...

...
...

λam1 λam2 · · · λamn

 .

Example:

λ = 2, AAA =

2 0
1 5
3 2

 , λAAA =

4 0
2 10
6 4

 .
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Scalar-matrix multiplication satisfies the distributivity law:

(i) λ(AAA + BBB) = λAAA + λBBB
(ii) (λ + µ)AAA = λAAA + µAAA

2.3 Element-by-element operations in R

Basic arithmetic operations work on an element-by-element basis in R:

A = matrix(c(2,1,3,0,5,2), ncol=2)
B = matrix(c(-1,7,-5,1,1,2), ncol=2)
A+B #matrix summation

[,1] [,2]
[1,] 1 1
[2,] 8 6
[3,] -2 4

A-B #matrix subtraction

[,1] [,2]
[1,] 3 -1
[2,] -6 4
[3,] 8 0

2*A #scalar-matrix product

[,1] [,2]
[1,] 4 0
[2,] 2 10
[3,] 6 4

A/2 #division of entries by 2

[,1] [,2]
[1,] 1.0 0.0
[2,] 0.5 2.5
[3,] 1.5 1.0
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A*B #element-wise multiplication

[,1] [,2]
[1,] -2 0
[2,] 7 5
[3,] -15 4

2.4 Vector-vector multiplication

2.4.1 Inner product

The inner product (also known as dot product) of two vectors aaa,bbb ∈ Rk is

aaa′bbb = a1b1 + a2b2 + . . . + akbk =
k∑

i=1
aibi ∈ R.

Example:

aaa =

1
2
3

 , bbb =

−2
0
2

 , aaa′bbb = 1 · (−2) + 2 · 0 + 3 · 2 = 4.

The inner product is commutative:

aaa′bbb = bbb′aaa.

Two vectors aaa and bbb are called orthogonal if aaa′bbb = 0. The vectors aaa and bbb are called
orthonormal if, in addition to aaa′bbb, we have aaa′aaa = 1 and bbb′bbb = 1.

2.4.2 Outer product

The outer product (also known as dyadic product) of two vectors xxx ∈ Rk and yyy ∈ Rm is

xxxyyy′ =


x1y1 x1y2 . . . x1ym

x2y1 x2y2 . . . x2ym
...

...
...

xky1 xky2 . . . xkym

 ∈ Rk×m.

Example:

xxx =
(

1
2

)
, yyy =

−2
0
2

 , xxxyyy′ =
(

−2 0 2
−4 0 4

)
.
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2.4.3 Vector multiplication in R

For vector multiplication in R, we use the operator %*% (recall that * is already reserved for
element-wise multiplication). Let’s implement some multiplications.

y = c(2,7,4,1) #y is treated as a column vector
t(y) %*% y #the inner product of y with itself

[,1]
[1,] 70

y %*% t(y) #the outer product of y with itself

[,1] [,2] [,3] [,4]
[1,] 4 14 8 2
[2,] 14 49 28 7
[3,] 8 28 16 4
[4,] 2 7 4 1

c(1,2) %*% t(c(-2,0,2)) #the example from above

[,1] [,2] [,3]
[1,] -2 0 2
[2,] -4 0 4

2.5 Matrix-matrix multiplication

The matrix product of a k × m matrix AAA and a m × n matrix BBB is the k × n matrix CCC = AAABBB
with the components

cij = ai1b1j + ai2b2j + . . . + aimbmj =
m∑

l=1
ailblj = aaa′

ibbbj ,

where aaai = (ai1, . . . , aim)′ is the i-th row of AAA written as a column vector, and bbbj = (b1j , . . . , bmj)′

is the j-th column of BBB. The full matrix product can be written as

AAABBB =

aaa′
1
...

aaa′
k

(bbb1 . . . bbbn

)
=

aaa′
1bbb1 . . . aaa′

1bbbn
...

...
aaa′

kbbb1 . . . aaa′
kbbbn

 .

12



The matrix product is only defined if the number of columns of the first matrix equals the
number of rows of the second matrix. Therefore, we say that the k × m matrix AAA and the
m × n matrix BBB are conformable for matrix multiplication.

Example: Let

AAA =

1 0
0 1
2 1

 , BBB =
(

−1 2
−3 0

)
.

Their matrix product is

AAABBB =

1 0
0 1
2 1

(−1 2
−3 0

)

=

1 · (−1) + 0 · (−3) 1 · 2 + 0 · 0
0 · (−1) + 1 · (−3) 0 · 2 + 1 · 0
2 · (−1) + 1 · (−3) 2 · 2 + 1 · 0

 =

−1 2
−3 0
−5 4

 .

The %*% operator is used in R for matrix-matrix multiplications:

A = matrix(c(1,0,2,0,1,1), ncol=2)
B = matrix(c(-1,-3,2,0), ncol=2)
A %*% B

[,1] [,2]
[1,] -1 2
[2,] -3 0
[3,] -5 4

Matrix multiplication is not commutative. In general, we have AAABBB ̸= BBBAAA. Example:

AAABBB =
(

1 2
3 4

)(
1 1
1 2

)
=
(

3 5
7 11

)
,

BBBAAA =
(

1 1
1 2

)(
1 2
3 4

)
=
(

4 6
7 10

)
.

Even if neither of the two matrices contains zeros, the matrix product can give the zero
matrix:

AAABBB =
(

1 2
2 4

)(
2 −4

−1 2

)
=
(

0 0
0 0

)
= 000.
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The following rules of calculation apply (provided the matrices are conformable):

(i) AAA(BBBCCC) = (AAABBB)CCC (associativity)
(ii) AAA(BBB + DDD) = AAABBB + AAADDD (distributivity)
(iii) (BBB + DDD)CCC = BBBCCC + DDDCCC (distributivity)
(iv) AAA(λBBB) = λ(AAABBB) (scalar commutativity)
(v) AAAIIIn = AAA , (identity element)
(vi) IIImAAA = AAA (identity element)
(vii) (AAABBB)′ = BBB′AAA′ (product transposition)
(viii) (AAABBBCCC)′ = CCC ′BBB′AAA′ (product transposition)
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3 Rank and inverse

3.1 Linear combination

Let xxx1, . . . ,xxxn be vectors of the same order, and let λ1, . . . , λn be scalars. The vector

λ1xxx1 + λ2xxx2 + . . . + λnxxxn

is called linear combination of xxx1, . . . ,xxxn. A linear combination can also be written as a
matrix-vector product. Let XXX =

(
xxx1 . . . xxxn

)
be the matrix with columns xxx1, . . . ,xxxn, and let

λλλ = (λ1, . . . , λn)′. Then,
λ1xxx1 + λ2xxx2 + . . . + λnxxxn = XXXλλλ.

The vectors xxx1, . . . ,xxxn are called linearly dependent if at least one can be written as a linear
combination of the others. That is, there exists a nonzero vector λλλ with

XXXλλλ = λ1xxx1 + . . . + λnxxxn = 000.

The vectors xxx1, . . . ,xxxn are called linearly independent if

XXXλλλ = λ1xxx1 + . . . + λnxxxn ̸= 000

for all nonzero vectors λλλ.

To check whether the vectors are linearly independent, we can solve the system of equations
XXXλλλ = 000 by Gaussian elimination. If λλλ = 000 is the only solution, then the columns of XXX are
linearly independent. If there is a solution λλλ with λλλ ≠ 000, then the columns of XXX are linearly
dependent.

3.2 Column rank

The rank of a k × m matrix AAA =
(
aaa1 . . . aaam

)
, written as rank(AAA), is the number of linearly

independent columns aaai. We say that AAA has full column rank if rank(XXX) = m.

The identity matrix IIIk has full column rank (i.e., rank(IIIn) = k). As another example, consider

XXX =
(

2 1 4
0 1 2

)
,
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which has linearly dependent columns since the third column is a linear combination of the
first two columns: (

4
2

)
= 1

(
2
0

)
+ 2

(
1
1

)
.

The first two columns are linearly independent since λ1 = 0 and λ2 = 0 are the only solutions
to the equation

λ1

(
2
0

)
+ λ2

(
1
1

)
=
(

0
0

)
.

Therefore, we have rank(XXX) = 2, i.e., XXX does not have a full column rank.

Some useful properties are

i) rank(AAA) ≤ min(k, m)
ii) rank(AAA) = rank(AAA′)
iii) rank(AAABBB) = min(rank(AAA), rank(BBB))
iv) rank(AAA) = rank(AAA′AAA) = rank(AAAAAA′).

We can use the qr() function to extract the rank in R. Let’s compute the rank of the matrices

AAA =

1 2 3
3 9 1
0 11 5

 ,

BBB = III3, and XXX from the example above:

A = matrix(c(1,3,0,2,9,11,3,1,5), nrow=3)
qr(A)$rank

[1] 3

B = matrix(c(1,1,1,1,1,1,1,1,1), nrow=3)
qr(B)$rank

[1] 1

X = matrix(c(2,0,1,1,4,2), ncol=3)
qr(X)$rank

[1] 2
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3.3 Nonsingular matrix

A square k × k matrix AAA is called nonsingular if it has full rank, i.e., rank(AAA) = k. Conversely,
AAA is called singular if it does not have full rank, i.e., rank(AAA) < k.

3.4 Determinant

Consider a square k × k matrix AAA. The determinant det(AAA) is a measure of the volume of
the geometric object formed by the columns of AAA (a parallelogram for k = 2, a parallelepiped
for k = 3, a hyper-parallelepiped for k > 3). For 2 × 2 matrices, the determinant is easy to
calculate:

AAA =
(

a b
c d

)
, det(AAA) = ad − bc.

If AAA is triangular (upper or lower), the determinant is the product of the diagonal entries,
i.e., det(AAA) =

∏k
i=1 aii. Hence, Gaussian elimination can be used to compute the determinant

by transforming the matrix to a triangular one. The exact definition of the determinant is
technical and of little importance to us. A useful relation is the following:

det(AAA) = 0 ⇔ AAA is singular
det(AAA) ̸= 0 ⇔ AAA is nonsingular.

In R, we have the det() function to compute the determinant:

det(A)

[1] 103

det(B)

[1] 0

Since det(AAA) ̸= 0 and det(BBB) = 0, we conclude that AAA is nonsingular and BBB is singular.
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3.5 Inverse matrix

The inverse AAA−1 of a square k × k matrix AAA is defined by the property

AAAAAA−1 = AAA−1AAA = IIIk.

When multiplied from the left or the right, the inverse matrix produces the identity matrix.
The inverse exists if and only if AAA is nonsingular, i.e., det(AAA) ̸= 0. Therefore, a nonsingular
matrix is also called invertible matrix. Note that only square matrices can be inverted.

For 2 × 2 matrices, there exists a simple formula:

AAA−1 = 1
det(AAA)

(
d −b

−c a

)
,

where det(AAA) = ad−bc. We swap the main diagonal elements, reverse the sign of the off-diagonal
elements, and divide all entries by the determinant. Example:

AAA =
(

5 6
1 2

)

We have det(AAA) = ad − bc = 5 · 2 − 6 · 1 = 4, and

AAA−1 = 1
4 ·
(

2 −6
−1 5

)
.

Indeed, AAA−1 is the inverse of AAA since

AAAAAA−1 =
(

5 6
1 2

)
· 1

4 ·
(

2 −6
−1 5

)
= 1

4 ·
(

4 0
0 4

)
=
(

1 0
0 1

)
= III2.

One way to calculate the inverse of higher order square matrices is to solve equation AAAAAA−1 = III
with Gaussian elimination. R can compute the inverse matrix quickly using the function
solve():

solve(A) #inverse if A

[,1] [,2] [,3]
[1,] 0.3300971 0.22330097 -0.24271845
[2,] -0.1456311 0.04854369 0.07766990
[3,] 0.3203883 -0.10679612 0.02912621
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We have the following relationship between invertibility, rank, and determinant of a square
matrix AAA:

AAA is nonsingular
⇔ all columns of AAA are linearly independent
⇔ AAA has full column rank
⇔ the determinant is nonzero (det(AAA) ̸= 0).

Similarly,

AAA is singular
⇔ AAA has linearly dependent columns
⇔ AAA does not have full rank
⇔ the determinant is zero (det(AAA) = 0).

Below you will find some important properties for nonsingular matrices:

i) (AAA−1)−1 = AAA
ii) (AAA′)−1 = (AAA−1)′

iii) (λAAA)−1 = 1
λAAA−1 for any λ ̸= 0

iv) det(AAA−1) = 1
det(AAA)

v) (AAABBB)−1 = BBB−1AAA−1

vi) (AAABBBCCC)−1 = CCC−1BBB−1AAA−1

vii) If AAA is symmetric, then AAA−1 is symmetric.
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4 Advanced concepts

4.1 Trace

The trace of a k × k square matrix AAA is the sum of the diagonal entries:

tr(AAA) =
n∑

i=1
aii

Example:

AAA =

1 2 3
3 9 1
0 11 5

 ⇒ tr(AAA) = 1 + 9 + 5 = 15

In Rwe have

A = matrix(c(1,3,0,2,9,11,3,1,5), nrow=3)
sum(diag(A)) #trace = sum of diagonal entries

[1] 15

The following properties hold for square matrices AAA and BBB and scalars λ:

i) tr(λAAA) = λ tr(AAA)
ii) tr(AAA + BBB) = tr(AAA) + tr(BBB)
iii) tr(AAA′) = tr(AAA)
iv) tr(IIIk) = k

For AAA ∈ Rk×m and BBB ∈ Rm×k we have

tr(AAABBB) = tr(BBBAAA).
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4.2 Idempotent matrix

The square matrix AAA is called idempotent if AAAAAA = AAA. The identity matrix is idempotent:
IIInIIIn = IIIn. Another example is the matrix

AAA =
(

4 −1
12 −3

)
.

We have

AAAAAA =
(

4 −1
12 −3

)(
4 −1
12 −3

)

=
(

16 − 12 −4 + 3
48 − 36 −12 + 9

)

=
(

4 −1
12 −3

)
= AAA.

4.3 Eigendecomposition

4.3.1 Eigenvalues

An eigenvalue λ of a k × k square matrix is a solution to the equation

det(λIIIk − AAA) = 0.

The function f(λ) = det(λIIIk − AAA) has exactly k roots so that det(λIIIk − AAA) = 0 has exactly k
solutions. The solutions λ1, . . . , λk are the k eigenvalues of AAA.

Most applications of eigenvalues in econometrics concern symmetric matrices. In this case, all
eigenvalues are real-valued. In the case of non-symmetric matrices, some eigenvalues may be
complex-valued.

Useful properties of the eigenvalues of a symmetric k × k matrix are:

i) det(AAA) = λ1 · . . . · λk

ii) tr(AAA) = λ1 + . . . + λk

iii) AAA is nonsingular if and only if all eigenvalues are nonzero
iv) AAABBB and BBBAAA have the same eigenvalues.

21



4.3.2 Eigenvectors

If λi is an eigenvalue of AAA, then λiIIIk − AAA is singular, which implies that there exists a linear
combination vector vvvi with (λiIIIk − AAA)vvvi = 000. Equivalently,

AAAvvvi = λivvvi,

which can be solved by Gaussian elimination. It is convenient to normalize any solution such
that vvv′

ivvvi = 1. The solutions vvv1, . . . , vvvk are called eigenvectors of AAA to corresponding eigenvalues
λ1, . . . , λk.

4.3.3 Spectral decomposition

If AAA is symmetric, then vvv1, . . . , vvvk are pairwise orthogonal (i.e., vvv′
ivvvj = 0 for i ̸= j). Let

VVV =
(
vvv1 . . . vvvk

)
be the k × k matrix of eigenvectors and let ΛΛΛ = diag(λ1, . . . , λk) be the

k × k diagonal matrix with the eigenvalues on the main diagonal. Then, we can write

AAA = VVV ΛΛΛVVV ′,

which is called the spectral decomposition of AAA. The matrix of eigenvalues can be written
as ΛΛΛ = VVV ′AAAVVV .

4.3.4 Eigendecomposition in R

The function eigen() computes the eigenvalues and corresponding eigenvectors.

B=t(A)%*%A
B #A'A is symmetric

[,1] [,2] [,3]
[1,] 10 29 6
[2,] 29 206 70
[3,] 6 70 35

eigen(B) #eigenvalues and eigenvector matrix
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eigen() decomposition
$values
[1] 234.827160 12.582227 3.590613

$vectors
[,1] [,2] [,3]

[1,] -0.1293953 -0.5312592 0.8372697
[2,] -0.9346164 -0.2167553 -0.2819739
[3,] -0.3312839 0.8190121 0.4684764

4.4 Definite matrix

The k × k square matrix AAA is called positive definite if

ccc′AcAcAc > 0

holds for all nonzero vectors ccc ∈ Rk. If

ccc′AcAcAc ≥ 0

for all vectors ccc ∈ Rk, the matrix is called positive semi-definite. Analogously, AAA is called
negative definite if ccc′AcAcAc < 0 and negative semi-definite if ccc′AcAcAc ≤ 0 for all nonzero vectors
ccc ∈ Rk. A matrix that is neither positive semi-definite nor negative semi-definite is called
indefinite

The definiteness property of a symmetric matrix AAA can be determined using its eigenvalues:

i) AAA is positive definite ⇔ all eigenvalues of AAA are strictly positive
ii) AAA is negative definite ⇔ all eigenvalues of AAA are strictly negative
iii) AAA is positive semi-definite ⇔ all eigenvalues of AAA are non-negative
iv) AAA is negative semi-definite ⇔ all eigenvalues of AAA are non-positive

eigen(B)$values #B is positive definite (all eigenvalues positive)

[1] 234.827160 12.582227 3.590613

The matrix analog of a positive or negative number (scalar) is a positive definite or negative
definite matrix. Therefore, we use the notation

i) AAA > 0 if AAA is positive definite
ii) AAA < 0 if AAA is negative definite
iii) AAA ≥ 0 if AAA is positive semi-definite
iv) AAA ≤ 0 if AAA is negative semi-definite

The notation AAA > BBB means that the matrix AAA − BBB is positive definite.
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4.5 Cholesky decomposition

Any positive definite and symmetric matrix BBB can be written as

BBB = PPPPPP ′,

where P is a lower triangular matrix with strictly positive diagonal entries pjj > 0. This
representation is called Cholesky decomposition. The matrix PPP is unique. For a 2 × 2
matrix BBB we have (

b11 b12
b21 b22

)
=
(

p11 0
p21 p22

)(
p11 p21
0 p22

)

=
(

p2
11 p11p21

p11p21 p2
21 + p2

22

)
,

which implies p11 =
√

b11, p21 = b21/p11, and p22 =
√

b22 − p2
21. For a 3 × 3 matrix we obtain

b11 b12 b31
b21 b22 b23
b31 b32 b33

 =

p11 0 0
p21 p22 0
p31 p32 p33


p11 p21 p31

0 p22 p32
0 0 p33


=

 p2
11 p11p21 p11p31

p11p21 p2
21 + p2

22 p21p31 + p22p32
p11p31 p21p31 + p22p32 p2

31 + p2
32 + p2

33

 ,

which implies

p11 =
√

b11, p21 = b21
p11

, p31 = b31
p11

, p22 =
√

b22 − p2
21,

p32 = b32 − p21p31
p22

, p33 =
√

b33 − p2
31 − p2

32.

Let’s compute the Cholesky decomposition of

BBB =

 1 −0.5 0.6
−0.5 1 0.25
0.6 0.25 1


using the R function chol():
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B = matrix(c(1, -0.5, 0.6, -0.5, 1, 0.25, 0.6, 0.25, 1), ncol=3)
chol(B)

[,1] [,2] [,3]
[1,] 1 -0.5000000 0.6000000
[2,] 0 0.8660254 0.6350853
[3,] 0 0.0000000 0.4864840

4.6 Vectorization

The vectorization operator vec() stacks the matrix entries column-wise into a large vector.
The vectorized k × m matrix AAA is the km × 1 vector

vec(AAA) = (a11, . . . , ak1, a12, . . . , ak2, . . . , a1m, . . . , akm)′.

c(A) #vectorize the matrix A

[1] 1 3 0 2 9 11 3 1 5

4.7 Kronecker product

The Kronecker product ⊗ multiplies each element of the left-hand side matrix with the
entire matrix on the right-hand side. For a k × m matrix AAA and a r × s matrix BBB, we get the
kr × ms matrix

A ⊗ B =

a11BBB . . . a1mBBB
...

...
ak1BBB . . . akmBBB

 ,

where each entry aijBBB is a r × s matrix.

A %x% B #Kronecker product in R

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 1.0 -0.50 0.60 2.0 -1.00 1.20 3.0 -1.50 1.80
[2,] -0.5 1.00 0.25 -1.0 2.00 0.50 -1.5 3.00 0.75
[3,] 0.6 0.25 1.00 1.2 0.50 2.00 1.8 0.75 3.00
[4,] 3.0 -1.50 1.80 9.0 -4.50 5.40 1.0 -0.50 0.60
[5,] -1.5 3.00 0.75 -4.5 9.00 2.25 -0.5 1.00 0.25
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[6,] 1.8 0.75 3.00 5.4 2.25 9.00 0.6 0.25 1.00
[7,] 0.0 0.00 0.00 11.0 -5.50 6.60 5.0 -2.50 3.00
[8,] 0.0 0.00 0.00 -5.5 11.00 2.75 -2.5 5.00 1.25
[9,] 0.0 0.00 0.00 6.6 2.75 11.00 3.0 1.25 5.00

4.8 Vector and matrix norm

A norm ∥ · ∥ of a vector or a matrix is a measure of distance from the origin. The most
commonly used norms are the Euclidean vector norm

∥aaa∥ =
√

aaa′aaa =

√√√√ k∑
i=1

a2
i

for aaa ∈ Rk, and the Frobenius matrix norm

∥AAA∥ =

√√√√√ k∑
i=1

m∑
j=1

a2
ij

for AAA ∈ Rk×m.

A norm satisfies the following properties:

i) ∥λAAA∥ = |λ|∥AAA∥ for any scalar λ (absolute homogeneity)
ii) ∥AAA + BBB∥ ≤ ∥AAA∥ + ∥BBB∥ (triangle inequality)
iii) ∥AAA∥ = 0 implies AAA = 000 (definiteness)
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5 Matrix calculus

Let f(β1, . . . , βk) = f(βββ) be a twice-differential real-valued function that depends on some
vector βββ = (β1, . . . , βk)′. Examples that frequently appear in econometrics are functions of the
inner product form f(βββ) = aaa′βββ, where aaa ∈ Rk, and functions of the sandwich form f(βββ) = βββ′AAAβββ,
where AAA ∈ Rk×k.

5.1 Gradient

The first derivatives vector or gradient is

∂f(βββ)
∂βββ

=


∂f(βββ)
∂β1
...

∂f(βββ)
∂βk


If the gradient is evaluated at some particular value βββ = bbb, we write

∂f

∂βββ
(bbb)

Useful properties for inner product and sandwich forms are

(i) ∂(aaa′βββ)
∂βββ

= aaa

(ii) ∂(βββ′AAAβββ)
∂βββ

= (AAA + AAA′)βββ.

5.2 Hessian

The second derivatives matrix or Hessian is the k × k matrix

∂2f(βββ)
∂βββ∂βββ′ =


∂2f(βββ)
∂β1∂β1

. . . ∂2f(βββ)
∂βk∂β1

...
...

∂2f(βββ)
∂β1∂βk

. . . ∂2f(βββ)
∂βk∂βk

 .
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If the Hessian is evaluated at some particular value βββ = bbb, we write

∂2f

∂βββ∂βββ′ (bbb)

The Hessian is symmetric. Each column of the Hessian is the derivative of the components of
the gradient for the corresponding variable in βββ′:

∂2f(βββ)
∂βββ∂βββ′ = ∂(∂f(βββ)/∂βββ)

∂βββ′

=
[

∂(∂f(βββ)/∂βββ)
∂β1

∂(∂f(βββ)/∂βββ)
∂β2

. . .
∂(∂f(βββ)/∂βββ)

∂βn

]

The Hessian of a sandwich form function is

∂2(βββ′AAAβββ)
∂βββ∂βββ′ = AAA + AAA′.

5.3 Optimization

Recall the first-order (necessary) and second-order (sufficient) conditions for optimum (maxi-
mum or minimum) in the univariate case:

• First-order condition: the first derivative evaluated at the optimum is zero.
• Second-order condition: the second derivative at the optimum is negative for a

maximum and positive for a minimum.

Similarly, we formulate first and second-order conditions for a function f(βββ). The first-order
condition for an optimum (maximum or minimum) at bbb is

∂f

∂βββ
(bbb) = 000.

The second-order condition is

∂2f

∂βββ∂βββ′ (bbb) > 0 for a minimum at bbb,

∂2f

∂βββ∂βββ′ (bbb) < 0 for a maximum at bbb.

Recall that, in the context of matrices, the notation “> 0” means positive definite, and “< 0”
means negative definite.
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6 Problems

Problem 1

Consider the matrix
AAA =

(
1 2
3 4

)
.

a) Determine AAA′. Is AAA symmetric?
b) Is AAA idempotent?
c) Compute the determinant and the rank. Is AAA nonsingular?
d) Compute the inverse.
e) Compute the trace.

Problem 2

a) Let AAABBB = CCC, where

AAA =
(

1 0
2 2

)
, CCC =

(
1 3
2 5

)
.

Compute BBB.
b) δδδ and γγγ are c × 1 vectors, XXX is a d × c matrix, and YYY is a c × d matrix. Determine the

orders of XXXYYY , YYY XXX, γγγ′γγγ, γγγγγγ′, and δδδ′YYY XXXγγγ. Under which conditions do the expressions
YYY −1 and δδδ′YYY XXX + γγγ′γγγ exist?

c) Compute tr(λRRR′RRR) for λ ∈ R and

RRR =
(

1
4

√
3

4√
3

4
3
4

)
.

Problem 3

Let AAA be nonsingular. Simplify the expression( 1√
2

AAA−1
( 1√

2
AAA′′ +

√
2

2 AAA

))
.
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Problem 4

Consider the n × k matrix XXX with rank(XXX) = k. Moreover, let PPP = XXX(XXX ′XXX)−1XXX ′, and let
MMM = IIIn − PPP

a) Determine the order of the following matrices: IIIn, XXX ′XXX, PPP , MMM
b) Which matrices from a) are symmetric?
c) Which matrices from a) are idempotent?
d) Compute the trace of IIIn and PPP .

Problem 5

Let XXX be a n × k matrix. Show that XXX ′XXX is positive semi-definite. Under which condition is
XXX ′XXX positive definite?

Problem 6

Let yyy ∈ Rn, XXX be a n × k matrix, and βββ ∈ Rk. Compute the derivatives

∂f(βββ)
∂βββ

,
∂2f(βββ)
∂βββ∂βββ′ ,

for the function f(βββ) = (yyy − XXXβββ)′(yyy − XXXβββ).

6.1 Solutions

Solutions to the problems are available here (unfortunately only in German so far)
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