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Welcome

Due to the multivariate character of many econometric topics, matrix algebra is a commonly
used tool in modern econometrics. It provides a powerful and efficient framework for representing
and manipulating systems of linear equations. This short lecture note series provides a brief
introduction to the most relevant matrix algebra concepts for econometricians and their
implementation in R.

To learn R, or refresh your skills, please check out my tutorial Getting Started With R.

Accompanying R scripts

All R codes of the different sections can be found here:

e matrix-secl.R
e matrix-sec2.R
e matrix-sec3.R
e matrix-sec4.R

Comments

Feedback is welcome. If you notice any typos or issues, please report them on GitHub or email
me at sven.otto@uni-koeln.de.


https://rintro.svenotto.com
https://matrix.svenotto.com/matrix-sec1.R
https://matrix.svenotto.com/matrix-sec2.R
https://matrix.svenotto.com/matrix-sec3.R
https://matrix.svenotto.com/matrix-sec4.R
https://github.com/ottosven/matrix/issues/new

1 Basic definitions

Let’s start with some basic definitions and specific examples.

1.1 Scalar, vector, and matrix

A scalar a is a single real number. We write a € R.

A vector a of length k is a k x 1 list of real numbers

ai

a2
a =

af

By default, when we refer to a vector, we always mean a column vector. We write @ € R*. The
value a; is called i-th entry or i-th component of @. A scalar is a vector of length 1. A row
vector of length k is written as b = (b1,...,bg).

A matrix A of order k x m is a rectangular array of real numbers

ail a2 - Qim

a1 G2 -+ G2m
A=

a1 a2 - Qgm

with k rows and m columns. We write A € R¥*™. The value a;; is called (i, j)-th entry or
(4, j)-th component of A. We also use the notation (A); ; to denote the (i, j)-th entry. A vector
of length k is a k x 1 matrix. A row vector of length k is a 1 x k matrix. A scalar is a matrix
of order 1 x 1.

We may describe a matrix A by its column or row vectors as
a)

A:(al as ... am): ,
ap



where

ay;
a; —
Qi
is the ¢-th column of A and a; = (a1, ..., @iy) is the i-th row.

1.2 Some specific matrices

A matrix is called square matrix if the numbers of rows and columns coincide (i.e., k = m).

(1)

is a square matrix. A square matrix is called diagonal matrix if all off-diagonal elements are

ZEro0.
10
L

is a diagonal matrix. We also write C = diag(1,4). A square matrix is called upper triangular
if all elements below the main diagonal are zero, and lower triangular if all elements above
the main diagonal are zero. Examples of an upper triangular matrix D and a lower triangular

matrix E are
1 2 10

The k x k diagonal matrix

10 --- 0
01 --- 0

I.=1|. . .| =diag(1,...,1)
00 --- 1

is called identity matrix of order k. The k£ x m matrix

0 --- 0

Opxm =17 "-.

0 --- 0

is called zero matrix. The zero vector of length £ is
0
0r=|:
0

If the order becomes clear from the context, we omit the indices and write I for the identity
matrix and 0 for the zero matrix or zero vector.



1.3 Transposition

The transpose A’ of the matrix A is obtained by flipping rows and columns on the main
diagonal:

ailr a1 -0 Al

a2 az2 - G2
A =

Q1lm  A2m - Agm

If A is a matrix of order k x m, then A’ is a matrix of order m x k. Example:

a=fos) = a=(3 1)
7 8
The definition implies that transposing twice produces the original matrix:
(A" = A.
The transpose of a (column) vector is a row vector:

a':(al,...,ak)

A symmetric matrix is a square matrix A with A’ = A. An example of a symmetric matrix
is
1 2
A= (2 4>.
1.4 Matrices in R

Let’s define some matrices in R:

A = matrix(c(1,4,7,2,5,8), nrow = 3, ncol = 2)
A

[,1]1 [,2]
[1,] 1 2
[2,] 4 5
[3,] 7 8



t(A) #transpose of A

[,11 [,21 [,3]
[1,] 1 4 7
[2,] 2 5 8

A[3,2] #the (3,2)-entry of A

(1] 8

B = matrix(c(1,2,2,4), nrow = 2, ncol = 2) # another matrix

all(B == t(B)) #check whether B is symmetric

[1] TRUE

diag(c(1,4)) #diagonal matrix

[,1]1 [,2]
[1,] 1 0
[2,] 0 4

diag(l, nrow = 3) #identity matrix

[,11 [,21 [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

matrix (0, nrow=2, ncol=5) #matrix of zeros

[,11 [,21 [,31 [,4]1 [,5]
[1,] 0 0 0 0 0
[2,] 0 0 0 0 0

dim(A) #number of rows and columns

[1] 3 2



2 Sums and Products

2.1 Matrix summation

Let A and B both be matrices of order k x m. Their sum is defined componentwise:

a1 +bi1 aip+bi2 - aim +bim

ag1 +ba1 aga+baa - agm + b2
A+B= . . " . "

ar1 +br1 ag2 +bra - apm + bm

Only two matrices of the same order can be added. Example:

2 0 11 11
A=|1 5|, B=|7 1|, A+B=|38 6
3 2 —5 2 2 4

The matrix summation satisfies the following rules:

(i) A+B=B+A (commutativity)
(i) (A+B)+C =A+(B+C) (associativity)
(iii) A+0=A (identity element)
(iv) (A+B) =A"+B’ (transposition)

2.2 Scalar-matrix multiplication

The product of a k x m matrix A with a scalar A\ € R is defined componentwise:

)\a11 )\alg s )\aln
e Aag1  Aage - Aag,
)\aml )\am2 ce Aamn
Example:
20 4 0
A=2 A=1|1 5|, M=1]2 10
3 2 6 4



Scalar-matrix multiplication satisfies the distributivity law:

(i) M(A+B)=)A+)B
(i) AN+ upA=XA+uA

2.3 Element-by-element operations in R

Basic arithmetic operations work on an element-by-element basis in R:

=
I

matrix(c(2,1,3,0,5,2), ncol=2)
matrix(c(-1,7,-5,1,1,2), ncol=2)
A+B #matrix summation

(os]
]

[,11 [,2]
[1,] 1 1
[2,] 8 6

A-B #matrix subtraction

[,11 [,2]
[1,] 3 -1
[2,1] -6 4
[3,] 8 0

2%A #scalar-matrix product

(.11 [,2]
[1,] 4 0

A/2 #division of entries by 2

[,11 [,2]
[1,] 1.0 0.0
[2,] 0.5 2.5
[3,] 1.5 1.0

10



AxB #element-wise multiplication

[,1] [,2]
[1,] -2 0

2.4 Vector-vector multiplication

2.4.1 Inner product

The inner product (also known as dot product) of two vectors a,b € R¥ is

k
a'b=ab; +asby + ...+ apbp = Zaibi e R.
=1

Ezample:
1 -2
a= 12|, b=|0|, adb=1-(-2)+2-0+3-2=4.
3 2

The inner product is commutative:
ab="ba.

Two vectors @ and b are called orthogonal if a’b = 0. The vectors a and b are called
orthonormal if, in addition to a@’b, we have a’a = 1 and b'b = 1.

2.4.2 Quter product

The outer product (also known as dyadic product) of two vectors £ € R¥ and y € R™ is

T1Yr T1Y2 ... T1Ym
r2yr x2Yy2 ... X2Y

my/ — ) ) ) m c kam'
Y1t TrY2 .- TkYm

Example:

11



2.4.3 Vector multiplication in R

For vector multiplication in R, we use the operator %*% (recall that * is already reserved for

element-wise multiplication). Let’s implement some multiplications.

y = c(2,7,4,1) #y is treated as a column vector
t(y) %*% y #the inner product of y with itself

(,1]
[1,] 70

y %*% t(y) #the outer product of y with itself

[,11 [,21 [,3] [,4]
[1,] 4 14 8 2
[2,1] 14 49 28 7
[3,] 8 28 16 4
[4,] 2 7 4 1

c(1,2) %*% t(c(-2,0,2)) #the example from above

[,11 [,2]1 [,3]
[1,] -2 0 2
[2,] -4 0 4

2.5 Matrix-matrix multiplication

The matrix product of a k X m matrix A and a m x n matrix B is the k x n matrix C = AB

with the components

m
/
cij = aibij + aigbaj + . .. + Gimbmj = Y _ agby; = ajbj,
=1

where a; = (a1, . .., aim)’ is the i-th row of A written as a column vector, and b; = (b1, . . ., bpmj)

is the j-th column of B. The full matrix product can be written as

a ayby ... ajb,

AB=|: | (b ... b)) =

!/ /
aj ajby ... apb,

12



The matrix product is only defined if the number of columns of the first matrix equals the
number of rows of the second matrix. Therefore, we say that the k X m matrix A and the
m X n matrix B are conformable for matrix multiplication.

Ezample: Let

Their matrix product is

10
AB= |0 1 (:; (2)>
2 1
1-(=1)+0-(=3) 1-240-0 -1 2
=[0-(-1)+1-(=3) 0:24+1-0|=|-3 0
2-(-1)+1-(=3) 2-2+41-0 —5 4

The %*% operator is used in R for matrix-matrix multiplications:
A = matrix(c(1,0,2,0,1,1), ncol=2)

B = matrix(c(-1,-3,2,0), ncol=2)
A %x% B

(.11 [,2]
[1,] -1 2
[2,] -3 0
[3,] -5 4

Matrix multiplication is not commutative. In general, we have AB # BA. Example:
1 2\ (1 1 3 5
AB = (3 4) (1 2) - <7 11) ’
1 1\ (1 2 4 6
sa=(1 3) (3 1)= w)

Even if neither of the two matrices contains zeros, the matrix product can give the zero

matrix:
1 2 2 -4 0 0
AB:(z 4)(1 2>:<0 0)20'

13



The following rules of calculation apply (provided the matrices are conformable):

(i) A(BC) = (AB)C (associativity)
(i) A(BB+D) = AB+AD (distributivity)
(ii) (B+D)C = BC+DC (distributivity)
(iv) A(AB) = MAB) (scalar commutativity)
(v) Al, = A, (identity element)
(vi) I,A = A (identity element)
(vii) (AB) = B'A (product transposition)
(viii) (ABC) = C'B’A’ (product transposition)

14



3 Rank and inverse

3.1 Linear combination

Let z1,...,x, be vectors of the same order, and let \{,...,\, be scalars. The vector

AMEL + XXy + ...+ ATy,

is called linear combination of x1,...,2,. A linear combination can also be written as a
matrix-vector product. Let X = (2:1 e .'z:n> be the matrix with columns z1,...,x,, and let
A= (A1,..., )", Then,

/\1(171 + )\ng + ...+ )\nmn =X\

The vectors x4, . ..,x, are called linearly dependent if at least one can be written as a linear
combination of the others. That is, there exists a nonzero vector A with

XA\=Mz1+...+ X\, =0.
The vectors 1, ...,x, are called linearly independent if
XA=X z1+ ...+ Az, #0

for all nonzero vectors A.

To check whether the vectors are linearly independent, we can solve the system of equations
XA =0 by Gaussian elimination. If A = 0 is the only solution, then the columns of X are
linearly independent. If there is a solution A with A # 0, then the columns of X are linearly
dependent.

3.2 Column rank

The rank of a k x m matrix A = (a1 - am), written as rank(A), is the number of linearly
independent columns a;. We say that A has full column rank if rank(X) = m.

The identity matrix I has full column rank (i.e., rank(I,) = k). As another example, consider
2 1 4
X = (0 1 2) ’

15



which has linearly dependent columns since the third column is a linear combination of the

first two columns:
4 2 1

The first two columns are linearly independent since Ay = 0 and A2 = 0 are the only solutions

to the equation
2 1 0
A1 <0> + A2 <1> = <0> i

Therefore, we have rank(X) = 2, i.e., X does not have a full column rank.

Some useful properties are

i) rank(A) < min(k, m)
ii) rank(A) = rank(A’)
iii; rankEAB) = min(rank(A), rank(B))

rank(A) = rank(A’A) = rank(AA’).

1v

We can use the qr () function to extract the rank in R. Let’s compute the rank of the matrices

1 2
A=1|3 9
01

—
Ut = W

B = I3, and X from the example above:

A = matrix(c(1,3,0,2,9,11,3,1,5), nrow=3)
gr (A) $rank

[1] 3

B = matrix(c(1,1,1,1,1,1,1,1,1), nrow=3)
qr (B) $rank

(1] 1

X = matrix(c(2,0,1,1,4,2), ncol=3)
qr (X) $rank

(1] 2

16



3.3 Nonsingular matrix

A square k x k matrix A is called nonsingular if it has full rank, i.e., rank(A) = k. Conversely,
A is called singular if it does not have full rank, i.e., rank(A) < k.

3.4 Determinant

Consider a square k x k matrix A. The determinant det(A) is a measure of the volume of
the geometric object formed by the columns of A (a parallelogram for k = 2, a parallelepiped
for k = 3, a hyper-parallelepiped for k£ > 3). For 2 x 2 matrices, the determinant is easy to
calculate:

a b
A= (c d) , det(A) = ad — be.
If A is triangular (upper or lower), the determinant is the product of the diagonal entries,
ie., det(A) = Hle a;;. Hence, Gaussian elimination can be used to compute the determinant

by transforming the matrix to a triangular one. The exact definition of the determinant is
technical and of little importance to us. A useful relation is the following;:

det(A) =0 < A issingular
det(A) #0 < A is nonsingular.

In R, we have the det () function to compute the determinant:

det (A)

[1] 103

det (B)

(11 o

Since det(A) # 0 and det(B) = 0, we conclude that A is nonsingular and B is singular.

17



3.5 Inverse matrix

The inverse A~! of a square k x k matrix A is defined by the property
AAT ' =ATTA=T,.

When multiplied from the left or the right, the inverse matrix produces the identity matrix.
The inverse exists if and only if A is nonsingular, i.e., det(A) # 0. Therefore, a nonsingular
matrix is also called invertible matrix. Note that only square matrices can be inverted.

For 2 x 2 matrices, there exists a simple formula:

a1 (d —b
4 ~ det(A) (—c a)’

where det(A) = ad—bc. We swap the main diagonal elements, reverse the sign of the off-diagonal
elements, and divide all entries by the determinant. Fxample:

+=(02)

We have det(A) =ad —bc=5-2—-6-1=4, and

41 (2 -6
A 4 <—1 5)'

Indeed, A~! is the inverse of A since

(5 6) 1 (2 —6\_1 (4 0)_ (1 0)|_
A4 _<1 2> 4 <—1 5)‘4 <0 4)‘(0 1>_12'

One way to calculate the inverse of higher order square matrices is to solve equation AA~1 =T
with Gaussian elimination. R can compute the inverse matrix quickly using the function
solve():

solve(A) #inverse if A

[,1] [,2] [,3]
[1,]1 0.3300971 0.22330097 -0.24271845
[2,] -0.1456311 0.04854369 0.07766990
[3,]1 0.3203883 -0.10679612 0.02912621

18



We have the following relationship between invertibility, rank, and determinant of a square
matrix A:

A is nonsingular

i3

all columns of A are linearly independent
A has full column rank
the determinant is nonzero (det(A) # 0).

T 0

Similarly,

A is singular
& A has linearly dependent columns
< A does not have full rank
< the determinant is zero (det(A) = 0).

Below you will find some important properties for nonsingular matrices:

) ( =

) ()71 = (A1)

) (M)t = 1A for any A # 0
iv) det(A™!) = m

) (AB)"'=B71A7!

) (ABC)"'=C~'B1A7!

) I

f A is symmetric, then A™! is symmetric.

19



4 Advanced concepts

4.1 Trace

The trace of a k x k square matrix A is the sum of the diagonal entries:

n
3
i=1

Example:
1 2 3
A=13 9 1 = tr(A)=149+5=15
0 11 5

In Rwe have

A = matrix(c(1,3,0,2,9,11,3,1,5), nrow=3)
sum(diag(A)) #trace = sum of diagonal entries

[1] 15

The following properties hold for square matrices A and B and scalars A:
i) tr(A) = A tr(A)
11) tr(A + B) = tr(A) + tr(B)

i) tr(4) = tr(d)

iv) tr(Iy) =

For A € RF*™ and B € R™** we have

tr(AB) = tr(BA).

20



4.2 Idempotent matrix

The square matrix A is called idempotent if AA = A. The identity matrix is idempotent:
I,I,=1,. Another example is the matrix

4 -1
A:<12 —3)‘
4 -1\ (4 -1
AA:<12 —3) (12 —3)

~(16-12 —4+43
“\48-36 —12+9

4 -1
<12 —3>:A‘

We have

4.3 Eigendecomposition

4.3.1 Eigenvalues

An eigenvalue A of a k x k square matrix is a solution to the equation

det(M — A) = 0.
The function f(\) = det(A, — A) has exactly k roots so that det(Al, — A) = 0 has exactly k
solutions. The solutions A1, ..., \; are the k eigenvalues of A.

Most applications of eigenvalues in econometrics concern symmetric matrices. In this case, all
eigenvalues are real-valued. In the case of non-symmetric matrices, some eigenvalues may be
complex-valued.

Useful properties of the eigenvalues of a symmetric k x k matrix are:

1) det( )—Al'--")\k

ii) tr(A) =M +...+ N\

iii) Ais nonsmgular if and only if all eigenvalues are nonzero
iv) AB and BA have the same eigenvalues.

21



4.3.2 Eigenvectors

If \; is an eigenvalue of A, then \;I; — A is singular, which implies that there exists a linear
combination vector v; with (A — A)v; = 0. Equivalently,

Av; = \v,,

which can be solved by Gaussian elimination. It is convenient to normalize any solution such
that vjv; = 1. The solutions vy, ..., vy are called eigenvectors of A to corresponding eigenvalues
Aly ey A

4.3.3 Spectral decomposition

If A is symmetric, then vy,...,v; are pairwise orthogonal (i.e., vjv; = 0 for ¢ # j). Let
V = (1)1 'vk> be the k x k matrix of eigenvectors and let A = diag(\1,..., ;) be the
k x k diagonal matrix with the eigenvalues on the main diagonal. Then, we can write

A=VAV'

which is called the spectral decomposition of A. The matrix of eigenvalues can be written

as A =V'AV.

4.3.4 Eigendecomposition in R
The function eigen() computes the eigenvalues and corresponding eigenvectors.
B=t (A) /*%A

B #A'A is symmetric

[,11 [,2]1 [,3]
[1,] 10 29 6
[2,] 29 206 70
[3,] 6 70 35

eigen(B) #eigenvalues and eigenvector matrix

22



eigen() decomposition
$values
[1] 234.827160 12.582227 3.590613

$vectors

[,1] [,2] [,3]
[1,] -0.1293953 -0.5312592 0.8372697
[2,] -0.9346164 -0.2167553 -0.2819739
[3,] -0.3312839 0.8190121 0.4684764

4.4 Definite matrix

The k x k square matrix A is called positive definite if
cAc >0
holds for all nonzero vectors ¢ € R*. If

cAc >0

for all vectors ¢ € R¥, the matrix is called positive semi-definite. Analogously, A is called
negative definite if ¢/ Ac < 0 and negative semi-definite if ¢/Ac < 0 for all nonzero vectors
¢ € R*. A matrix that is neither positive semi-definite nor negative semi-definite is called
indefinite

The definiteness property of a symmetric matrix A can be determined using its eigenvalues:

i) A is positive definite < all eigenvalues of A are strictly positive

) A is negative definite < all eigenvalues of A are strictly negative
)

)

11

iii) A is positive semi-definite < all eigenvalues of A are non-negative

iv) A is negative semi-definite < all eigenvalues of A are non-positive

eigen(B)$values #B is positive definite (all eigenvalues positive)

[1] 234.827160 12.582227  3.590613

The matrix analog of a positive or negative number (scalar) is a positive definite or negative
definite matrix. Therefore, we use the notation

) A >0 if A is positive definite

) A <0 if A is negative definite

iii) A >0 if A is positive semi-definite
) A <0 if A is negative semi-definite

The notation A > B means that the matrix A — B is positive definite.

23



4.5 Cholesky decomposition

Any positive definite and symmetric matrix B can be written as
B = PP/,

where P is a lower triangular matrix with strictly positive diagonal entries p;; > 0. This
representation is called Cholesky decomposition. The matrix P is unique. For a 2 x 2

bii b2\ _ (pun O D11 P21

bo1 b2 P21 P22 0  poo
_( P pupn

P11P21 p%l + p%g ’

which implies p11 = /b11, p21 = b21/p11, and pag = y/bag — p%l. For a 3 x 3 matrix we obtain

matrix B we have

bir bz b pin 0 0 P11 P21 P31

bar b2 baz | = [p21 pa2 O 0 p2 p32

bs1 b32 b33 D31 P32 D33 0 0 p33
]3%1 P11P21 P11P31

= | p11P21 pgl +p§2 P21P31 + P22P32 |
P11P31  p21P31 + P22p32 P§1 +P:2:,2 +P§3

which implies

b b
P11 = Vb, pa = 1%7 P31 = ]%, P22 = \/ b2z — D3y,
b3z — p21p31
P32 = ——————, pa3 = /b33 — p3, — P3s.
P22
Let’s compute the Cholesky decomposition of
1 —-0.5 0.6
B=]-05 1 0.25
0.6 0.25 1

using the R function chol():

24



B = matrix(c(1, -0.5, 0.6, -0.5, 1, 0.25, 0.6, 0.25, 1), ncol=3)
chol(B)

[,1] [,2] [,3]

] 1 -0.5000000 0.6000000
[2,1] 0 0.8660254 0.6350853
] 0 0.0000000 0.4864840

4.6 Vectorization

The vectorization operator vec() stacks the matrix entries column-wise into a large vector.
The vectorized k x m matrix A is the km x 1 vector

VeC(A) = (CLH, ey A1, A12y - - -y AK2y e o o s Ay - - - ,akm)'.

c(A) #vectorize the matrix A

(1] 1 3 0 2 911 3 1 5

4.7 Kronecker product

The Kronecker product ® multiplies each element of the left-hand side matrix with the
entire matrix on the right-hand side. For a k x m matrix A and a r X s matrix B, we get the
kr x ms matrix

anB ‘e almB

A®B = :

a1 B ... ap,B

where each entry a;;B is a r X s matrix.

A 7x% B #Kronecker product in R

(,11 [,2]1 [,3] [,4]1 [,8] [,e]l [,71 [,8] [,9]
(1,] 1.0 -0.50 0.60 2.0 -1.00 1.20 3.0 -1.50 1.80
[2,]1 -0 1.00 0.256 -1.0 2.00 0.50 -1.5 3.00 0.75
[(3,] 0.6 0.25 1.00 1.2 0.50 2.00 1.8 0.75 3.00
[4,] 3.0 -1.50 1.80 9.0 -4.50 5.40 1.0 -0.50 0.60
(5,] -1.5 3.00 0.75 -4.5 9.00 2.25 -0.5 1.00 0.25

.0
.5
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0.75 3.00 5.4 2.25 9.00 0.6 0.25 1.00
0.00 0.00 11.0 -5.50 6.60 5.0 -2.50 3.00
0.00 0.00 -5.5 11.00 2.75 -2.5 5.00 1.25
0.00 0.00 6.6 2.75 11.00 3.0 1.25 5.00

O O O =
O O O

4.8 Vector and matrix norm

A norm || - || of a vector or a matrix is a measure of distance from the origin. The most
commonly used norms are the Euclidean vector norm

k
lall = Va'a = | > a
i=1

for @ € R¥, and the Frobenius matrix norm

kK m
> D a

i=1j=1

1Al} =

for A € RF*m,

A norm satisfies the following properties:

i) ||IM| = |A|||A]| for any scalar A (absolute homogeneity)
ii) ||A+ B| < ||A|| + ||B]| (triangle inequality)
iii) ||A|| = 0 implies A = 0 (definiteness)
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5 Matrix calculus

Let f(f51,...,8k) = f(B) be a twice-differential real-valued function that depends on some
vector B = (f31,...,0k). Examples that frequently appear in econometrics are functions of the
inner product form f(B) = a’B, where a € R*, and functions of the sandwich form f(8) = B'ApB,
where A € RF*k,

5.1 Gradient

The first derivatives vector or gradient is

o5(6)

or@) _ [ "
B a/(8)
0Bk

If the gradient is evaluated at some particular value 8 = b, we write

of
%(b)
Useful properties for inner product and sandwich forms are
: d(a'B
() o —a
g (B'AB) _ /

5.2 Hessian

The second derivatives matrix or Hessian is the £ x k& matrix

21g) 210

aQ f (ﬁ) _ 1: 1 k: 1
/ . .

BB 9 f(B) 9 f(B)

08108k 7" 0BKOBk
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If the Hessian is evaluated at some particular value 8 = b, we write

82 f

The Hessian is symmetric. Each column of the Hessian is the derivative of the components of
the gradient for the corresponding variable in B’:

0*f(B) _ 0(9f(B)/9B)

oBop op’
_ |0(0f(B)/0B) 0(0f(B)/9B) 2(0f(B)/9B)
0B 032 o 0pBn

The Hessian of a sandwich form function is

0*(B'AB)

5.3 Optimization

Recall the first-order (necessary) and second-order (sufficient) conditions for optimum (maxi-
mum or minimum) in the univariate case:

¢ First-order condition: the first derivative evaluated at the optimum is zero.
¢ Second-order condition: the second derivative at the optimum is negative for a
maximum and positive for a minimum.

Similarly, we formulate first and second-order conditions for a function f(8). The first-order
condition for an optimum (maximum or minimum) at b is

of ..
3 =0

The second-order condition is
Of
oBop’

0% f
0Bop’

Recall that, in the context of matrices, the notation “> 0” means positive definite, and “< 0”
means negative definite.

(b) >0 for a minimum at b,

(b) <0 for a maximum at b.
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6 Problems

Problem 1

Consider the matrix

a) Determine A’. Is A symmetric?

b) Is A idempotent?

¢) Compute the determinant and the rank. Is A nonsingular?
d) Compute the inverse.

e) Compute the trace.

Problem 2

a) Let AB = C, where

10 1 3
A=) e-a3)
Compute B.

b)  and v are ¢ x 1 vectors, X is a d x ¢ matrix, and Y is a ¢ x d matrix. Determine the
orders of XY, Y X, 4"y, 4y, and §'Y Xv. Under which conditions do the expressions
Y~ and §'Y X + 'y exist?

¢) Compute tr(AR'R) for A € R and

oy

I
VN
»‘EMH
I3 uk‘a
N———

Problem 3

Let A be nonsingular. Simplify the expression

(i - 54)
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Problem 4

Consider the n x k matrix X with rank(X) = k. Moreover, let P = X(X'X)~'X’, and let
M=1,—-P

Determine the order of the following matrices: I,,, X'X, P, M
Which matrices from a) are symmetric?
Which matrices from a) are idempotent?

a
b
c
d) Compute the trace of I,, and P.

)
)
)
)

Problem 5

Let X be a n x k matrix. Show that X’X is positive semi-definite. Under which condition is
X'X positive definite?

Problem 6

Let y € R”, X be a n x k matrix, and 8 € R¥. Compute the derivatives

ofB)  *f(B)
o8 = 0Bop

for the function f(8) = (y — XB)'(y — XB).

6.1 Solutions

Solutions to the problems are available here (unfortunately only in German so far)
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