Crash Course in Matrix Algebra

Sven Otto

October 10, 2023

Table of contents

W	elcon	ne 4
	Acco	ompanying R scripts
	Con	1 ments
1	Basi	ic definitions 5
	1.1	Scalar, vector, and matrix
	1.2	Some specific matrices
	1.3	$Transposition \dots \dots$
	1.4	Matrices in R
2	Sum	ns and Products 9
	2.1	Matrix summation
	2.2	Scalar-matrix multiplication
	2.3	Element-by-element operations in R 10
	2.4	Vector-vector multiplication
		2.4.1 Inner product $\ldots \ldots \ldots$
		2.4.2 Outer product $\ldots \ldots \ldots$
		2.4.3 Vector multiplication in R $\dots \dots $
	2.5	Matrix-matrix multiplication 12
3	Ran	k and inverse 15
	3.1	Linear combination
	3.2	Column rank
	3.3	Nonsingular matrix
	3.4	Determinant
	3.5	Inverse matrix
4	Adv	anced concepts 20
	4.1	Trace
	4.2	Idempotent matrix
	4.3	Eigendecomposition
		4.3.1 Eigenvalues
		4.3.2 Eigenvectors
		4.3.3 Spectral decomposition
		4.3.4 Eigendecomposition in R
	4.4	Definite matrix

	4.5	Cholesky decomposition
	4.6	Vectorization
	4.7	Kronecker product
	4.8	Vector and matrix norm
5	Mat	rix calculus 27
	5.1	Gradient
	5.2	Hessian
	5.3	Optimization
6	Prol	plems 29
		Problem 1
		Problem 2
		Problem 3
		Problem 4
		Problem 5
		Problem 6
	6.1	Solutions

Welcome

Due to the multivariate character of many econometric topics, matrix algebra is a commonly used tool in modern econometrics. It provides a powerful and efficient framework for representing and manipulating systems of linear equations. This short lecture note series provides a brief introduction to the most relevant matrix algebra concepts for econometricians and their implementation in R.

To learn R or refresh your skills, please check out my tutorial Getting Started With R.

Accompanying R scripts

All R codes of the different sections can be found here:

- matrix-sec1.R
- matrix-sec2.R
- matrix-sec3.R
- matrix-sec4.R

Comments

Feedback is welcome. If you notice any typos or issues, please report them on GitHub or email me at sven.otto@uni-koeln.de.

1 Basic definitions

Let's start with some basic definitions and specific examples.

1.1 Scalar, vector, and matrix

A scalar *a* is a single real number. We write $a \in \mathbb{R}$.

A vector **a** of length k is a $k \times 1$ list of real numbers

$$oldsymbol{a} = egin{pmatrix} a_1 \ a_2 \ dots \ a_k \end{pmatrix}.$$

By default, when we refer to a vector, we always mean a column vector. We write $\boldsymbol{a} \in \mathbb{R}^k$. The value a_i is called *i*-th entry or *i*-th component of \boldsymbol{a} . A scalar is a vector of length 1. A row vector of length k is written as $\boldsymbol{b} = (b_1, \ldots, b_k)$.

A matrix **A** of order $k \times m$ is a rectangular array of real numbers

$$\boldsymbol{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{km} \end{pmatrix}$$

with k rows and m columns. We write $\mathbf{A} \in \mathbb{R}^{k \times m}$. The value a_{ij} is called (i, j)-th entry or (i, j)-th component of \mathbf{A} . We also use the notation $(\mathbf{A})_{i,j}$ to denote the (i, j)-th entry. A vector of length k is a $k \times 1$ matrix. A row vector of length k is a $1 \times k$ matrix. A scalar is a matrix of order 1×1 .

We may describe a matrix \boldsymbol{A} by its column or row vectors as

$$oldsymbol{A} = egin{pmatrix} oldsymbol{a}_1 & oldsymbol{a}_2 & \dots & oldsymbol{a}_m \end{pmatrix} = egin{pmatrix} oldsymbol{lpha}_1 \ dots \ oldsymbol{a}_k \end{pmatrix},$$

where

$$\boldsymbol{a}_i = \begin{pmatrix} a_{1i} \\ \vdots \\ a_{ki} \end{pmatrix}$$

is the *i*-th column of \boldsymbol{A} and $\boldsymbol{\alpha}_i = (a_{i1}, \ldots, a_{im})$ is the *i*-th row.

1.2 Some specific matrices

A matrix is called **square matrix** if the numbers of rows and columns coincide (i.e., k = m).

$$\boldsymbol{B} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

is a square matrix. A square matrix is called **diagonal matrix** if all off-diagonal elements are zero.

$$m{C} = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$$

is a diagonal matrix. We also write C = diag(1, 4). A square matrix is called **upper triangular** if all elements below the main diagonal are zero, and **lower triangular** if all elements above the main diagonal are zero. Examples of an upper triangular matrix D and a lower triangular matrix E are

$$\boldsymbol{D} = \begin{pmatrix} 1 & 2 \\ 0 & 4 \end{pmatrix}, \quad \boldsymbol{E} = \begin{pmatrix} 1 & 0 \\ 3 & 4 \end{pmatrix}.$$

The $k \times k$ diagonal matrix

$$\boldsymbol{I}_{k} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = \operatorname{diag}(1, \dots, 1)$$

is called **identity matrix** of order k. The $k \times m$ matrix

$$\mathbf{0}_{k\times m} = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}$$

is called **zero matrix**. The **zero vector** of length k is

$$\mathbf{0}_k = \begin{pmatrix} 0\\ \vdots\\ 0 \end{pmatrix}.$$

If the order becomes clear from the context, we omit the indices and write I for the identity matrix and 0 for the zero matrix or zero vector.

1.3 Transposition

The **transpose** A' of the matrix A is obtained by flipping rows and columns on the main diagonal:

$$\boldsymbol{A}' = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{k1} \\ a_{12} & a_{22} & \cdots & a_{k2} \\ \vdots & \vdots & & \vdots \\ a_{1m} & a_{2m} & \cdots & a_{km} \end{pmatrix}.$$

If **A** is a matrix of order $k \times m$, then **A**' is a matrix of order $m \times k$. Example:

$$\boldsymbol{A} = \begin{pmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{pmatrix} \quad \Rightarrow \quad \boldsymbol{A}' = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \end{pmatrix}$$

The definition implies that transposing twice produces the original matrix:

$$(\boldsymbol{A}')' = \boldsymbol{A}.$$

The transpose of a (column) vector is a row vector:

$$\boldsymbol{a}' = (a_1, \ldots, a_k)$$

A symmetric matrix is a square matrix A with A' = A. An example of a symmetric matrix is

$$\boldsymbol{A} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}.$$

1.4 Matrices in R

Let's define some matrices in R:

A = matrix(c(1,4,7,2,5,8), nrow = 3, ncol = 2) A

	[,1]	[,2]
[1,]	1	2
[2,]	4	5
[3,]	7	8

A[3,2] #the (3,2)-entry of A

[1] 8

B = matrix(c(1,2,2,4), nrow = 2, ncol = 2) # another matrix all(B == t(B)) #check whether B is symmetric

[1] TRUE

diag(c(1,4)) #diagonal matrix

[,1] [,2] [1,] 1 0 [2,] 0 4

diag(1, nrow = 3) #identity matrix

matrix(0, nrow=2, ncol=5) #matrix of zeros

dim(A) #number of rows and columns

[1] 3 2

2 Sums and Products

2.1 Matrix summation

Let **A** and **B** both be matrices of order $k \times m$. Their sum is defined componentwise:

$$\boldsymbol{A} + \boldsymbol{B} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1m} + b_{1m} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2m} + b_{2m} \\ \vdots & \vdots & & \vdots \\ a_{k1} + b_{k1} & a_{k2} + b_{k2} & \cdots & a_{km} + b_{km} \end{pmatrix}.$$

Only two matrices of the same order can be added. Example:

$$\boldsymbol{A} = \begin{pmatrix} 2 & 0 \\ 1 & 5 \\ 3 & 2 \end{pmatrix}, \quad \boldsymbol{B} = \begin{pmatrix} -1 & 1 \\ 7 & 1 \\ -5 & 2 \end{pmatrix}, \quad \boldsymbol{A} + \boldsymbol{B} = \begin{pmatrix} 1 & 1 \\ 8 & 6 \\ -2 & 4 \end{pmatrix}.$$

The matrix summation satisfies the following rules:

(i)
$$A + B = B + A$$
 (commutativity)
(ii) $(A + B) + C = A + (B + C)$ (associativity)
(iii) $A + 0 = A$ (identity element)
(iv) $(A + B)' = A' + B'$ (transposition)

2.2 Scalar-matrix multiplication

The product of a $k \times m$ matrix **A** with a scalar $\lambda \in \mathbb{R}$ is defined componentwise:

$$\lambda \boldsymbol{A} = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \\ \vdots & \vdots & & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \cdots & \lambda a_{mn} \end{pmatrix}.$$

Example:

$$\lambda = 2, \quad \boldsymbol{A} = \begin{pmatrix} 2 & 0 \\ 1 & 5 \\ 3 & 2 \end{pmatrix}, \quad \lambda \boldsymbol{A} = \begin{pmatrix} 4 & 0 \\ 2 & 10 \\ 6 & 4 \end{pmatrix}.$$

Scalar-matrix multiplication satisfies the distributivity law:

(i)
$$\lambda(\mathbf{A} + \mathbf{B}) = \lambda \mathbf{A} + \lambda \mathbf{B}$$

(ii) $(\lambda + \mu)\mathbf{A} = \lambda \mathbf{A} + \mu \mathbf{A}$

2.3 Element-by-element operations in R

Basic arithmetic operations work on an element-by-element basis in R:

A = matrix(c(2,1,3,0,5,2), ncol=2)B = matrix(c(-1,7,-5,1,1,2), ncol=2)A+B #matrix summation [,1] [,2] [1,] 1 1 [2,] 8 6 [3,] 4 -2 A-B #matrix subtraction [,1] [,2] [1,] 3 -1 [2,] -6 4 [3,] 8 0 2*A #scalar-matrix product [,1] [,2] [1,] 4 0 [2,] 2 10 [3,] 6 4 A/2 #division of entries by 2 [,1] [,2] [1,] 1.0 0.0 [2,] 0.5 2.5 [3,] 1.5 1.0

	[,1]	[,2]
[1,]	-2	0
[2,]	7	5
[3,]	-15	4

2.4 Vector-vector multiplication

2.4.1 Inner product

The inner product (also known as dot product) of two vectors $\pmb{a}, \pmb{b} \in \mathbb{R}^k$ is

$$\boldsymbol{a}'\boldsymbol{b} = a_1b_1 + a_2b_2 + \ldots + a_kb_k = \sum_{i=1}^k a_ib_i \in \mathbb{R}.$$

Example:

$$\boldsymbol{a} = \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix}, \quad \boldsymbol{b} = \begin{pmatrix} -2\\ 0\\ 2 \end{pmatrix}, \quad \boldsymbol{a}'\boldsymbol{b} = 1 \cdot (-2) + 2 \cdot 0 + 3 \cdot 2 = 4$$

The inner product is commutative:

a'b = b'a.

Two vectors \boldsymbol{a} and \boldsymbol{b} are called **orthogonal** if $\boldsymbol{a}'\boldsymbol{b} = 0$. The vectors \boldsymbol{a} and \boldsymbol{b} are called **orthonormal** if, in addition to $\boldsymbol{a}'\boldsymbol{b}$, we have $\boldsymbol{a}'\boldsymbol{a} = 1$ and $\boldsymbol{b}'\boldsymbol{b} = 1$.

2.4.2 Outer product

The outer product (also known as dyadic product) of two vectors $\boldsymbol{x} \in \mathbb{R}^k$ and $\boldsymbol{y} \in \mathbb{R}^m$ is

$$oldsymbol{xy}' = egin{pmatrix} x_1y_1 & x_1y_2 & \ldots & x_1y_m \ x_2y_1 & x_2y_2 & \ldots & x_2y_m \ dots & dots & dots & dots \ x_ky_1 & x_ky_2 & \ldots & x_ky_m \end{pmatrix} \in \mathbb{R}^{k imes m}.$$

Example:

$$\boldsymbol{x} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad \boldsymbol{y} = \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix}, \quad \boldsymbol{xy}' = \begin{pmatrix} -2 & 0 & 2 \\ -4 & 0 & 4 \end{pmatrix}.$$

2.4.3 Vector multiplication in R

For vector multiplication in R, we use the operator %*% (recall that * is already reserved for element-wise multiplication). Let's implement some multiplications.

y = c(2,7,4,1) #y is treated as a column vector t(y) %*% y #the inner product of y with itself

[,1] [1,] 70 y %*% t(y) #the outer product of y with itself [,1] [,2] [,3] [,4] [1,] 4 14 8 2 [2,] 14 49 28 7 [3,] 8 28 4 16 [4,] 2 7 4 1 c(1,2) %*% t(c(-2,0,2)) #the example from above [,1] [,2] [,3] [1,] -2 0 2 [2,]

2.5 Matrix-matrix multiplication

4

0

-4

The matrix product of a $k \times m$ matrix A and a $m \times n$ matrix B is the $k \times n$ matrix C = ABwith the components

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{im}b_{mj} = \sum_{l=1}^{m} a_{il}b_{lj} = a'_i b_j,$$

where $\boldsymbol{a}_i = (a_{i1}, \ldots, a_{im})'$ is the *i*-th row of \boldsymbol{A} written as a column vector, and $\boldsymbol{b}_j = (b_{1j}, \ldots, b_{mj})'$ is the *j*-th column of \boldsymbol{B} . The full matrix product can be written as

$$oldsymbol{AB} = egin{pmatrix} oldsymbol{a}_1' \ dots \ oldsymbol{a}_k' \end{pmatrix} egin{pmatrix} oldsymbol{b}_1 & \ldots & oldsymbol{b}_n \end{pmatrix} = egin{pmatrix} oldsymbol{a}_1'oldsymbol{b}_1 & \ldots & oldsymbol{a}_1'oldsymbol{b}_n \ dots & dots \ oldsymbol{a}_k'oldsymbol{b}_1 & \ldots & oldsymbol{a}_k'oldsymbol{b}_n \end{pmatrix} = egin{pmatrix} oldsymbol{a}_1'oldsymbol{b}_1 & \ldots & oldsymbol{a}_1'oldsymbol{b}_n \ dots & dots \ oldsymbol{a}_k'oldsymbol{b}_1 & \ldots & oldsymbol{a}_k'oldsymbol{b}_n \end{pmatrix} + egin{pmatrix} oldsymbol{a}_k'oldsymbol{b}_1 & \ldots & oldsymbol{b}_n'oldsymbol{b}_n \ dots \ oldsymbol{b}_k'oldsymbol{b}_n \end{pmatrix} = egin{pmatrix} oldsymbol{a}_k'oldsymbol{b}_1 & \ldots & oldsymbol{a}_k'oldsymbol{b}_n \ dots \ oldsymbol{b}_k'oldsymbol{b}_n'$$

The matrix product is only defined if the number of columns of the first matrix equals the number of rows of the second matrix. Therefore, we say that the $k \times m$ matrix \boldsymbol{A} and the $m \times n$ matrix \boldsymbol{B} are conformable for matrix multiplication.

Example: Let

$$\boldsymbol{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 1 \end{pmatrix}, \quad \boldsymbol{B} = \begin{pmatrix} -1 & 2 \\ -3 & 0 \end{pmatrix}.$$

Their matrix product is

$$\begin{aligned} \boldsymbol{AB} &= \begin{pmatrix} 1 & 0\\ 0 & 1\\ 2 & 1 \end{pmatrix} \begin{pmatrix} -1 & 2\\ -3 & 0 \end{pmatrix} \\ &= \begin{pmatrix} 1 \cdot (-1) + 0 \cdot (-3) & 1 \cdot 2 + 0 \cdot 0\\ 0 \cdot (-1) + 1 \cdot (-3) & 0 \cdot 2 + 1 \cdot 0\\ 2 \cdot (-1) + 1 \cdot (-3) & 2 \cdot 2 + 1 \cdot 0 \end{pmatrix} = \begin{pmatrix} -1 & 2\\ -3 & 0\\ -5 & 4 \end{pmatrix}. \end{aligned}$$

The %% operator is used in R for matrix-matrix multiplications:

A = matrix(c(1,0,2,0,1,1), ncol=2)
B = matrix(c(-1,-3,2,0), ncol=2)
A %*% B

	[,1]	[,2]
[1,]	-1	2
[2,]	-3	0
[3,]	-5	4

Matrix multiplication is not commutative. In general, we have $AB \neq BA$. Example:

$$\boldsymbol{AB} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 5 \\ 7 & 11 \end{pmatrix},$$
$$\boldsymbol{BA} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 7 & 10 \end{pmatrix}.$$

Even if neither of the two matrices contains zeros, the matrix product can give the zero matrix:

$$\boldsymbol{AB} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 2 & -4 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \boldsymbol{0}.$$

The following rules of calculation apply (provided the matrices are conformable):

(i)	$oldsymbol{A}(oldsymbol{BC})$	=	$(\boldsymbol{A}\boldsymbol{B})\boldsymbol{C}$	(associativity)
(ii)	$\boldsymbol{A}(\boldsymbol{B}+\boldsymbol{D})$	=	AB + AD	(distributivity)
(iii)	$(\boldsymbol{B}+\boldsymbol{D})\boldsymbol{C}$	=	BC + DC	(distributivity)
(iv)	$oldsymbol{A}(\lambda oldsymbol{B})$	=	$\lambda({oldsymbol{AB}})$	(scalar commutativity)
(v)	AI_n	=	$oldsymbol{A}$,	(identity element)
(vi)	$I_m A$	=	A	(identity element)
(vii)	$(\boldsymbol{A}\boldsymbol{B})'$	=	B'A'	(product transposition)
(viii)	(ABC)'	=	C'B'A'	(product transposition)

3 Rank and inverse

3.1 Linear combination

Let $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n$ be vectors of the same order, and let $\lambda_1, \ldots, \lambda_n$ be scalars. The vector

$$\lambda_1 x_1 + \lambda_2 x_2 + \ldots + \lambda_n x_n$$

is called **linear combination** of $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n$. A linear combination can also be written as a matrix-vector product. Let $\boldsymbol{X} = \begin{pmatrix} \boldsymbol{x}_1 & \ldots & \boldsymbol{x}_n \end{pmatrix}$ be the matrix with columns $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n$, and let $\boldsymbol{\lambda} = (\lambda_1, \ldots, \lambda_n)'$. Then,

$$\lambda_1 \boldsymbol{x}_1 + \lambda_2 \boldsymbol{x}_2 + \ldots + \lambda_n \boldsymbol{x}_n = \boldsymbol{X} \boldsymbol{\lambda}_n$$

The vectors $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n$ are called **linearly dependent** if at least one can be written as a linear combination of the others. That is, there exists a nonzero vector $\boldsymbol{\lambda}$ with

$$X\lambda = \lambda_1 x_1 + \ldots + \lambda_n x_n = 0.$$

The vectors $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n$ are called **linearly independent** if

$$X\lambda = \lambda_1 x_1 + \ldots + \lambda_n x_n \neq 0$$

for all nonzero vectors $\boldsymbol{\lambda}$.

To check whether the vectors are linearly independent, we can solve the system of equations $X\lambda = 0$ by Gaussian elimination. If $\lambda = 0$ is the only solution, then the columns of X are linearly independent. If there is a solution λ with $\lambda \neq 0$, then the columns of X are linearly dependent.

3.2 Column rank

The rank of a $k \times m$ matrix $\mathbf{A} = \begin{pmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_m \end{pmatrix}$, written as rank (\mathbf{A}) , is the number of linearly independent columns \mathbf{a}_i . We say that \mathbf{A} has full column rank if rank $(\mathbf{X}) = m$.

The identity matrix I_k has full column rank (i.e., rank $(I_n) = k$). As another example, consider

$$\boldsymbol{X} = \begin{pmatrix} 2 & 1 & 4 \\ 0 & 1 & 2 \end{pmatrix},$$

which has linearly dependent columns since the third column is a linear combination of the first two columns:

$$\begin{pmatrix} 4\\2 \end{pmatrix} = 1 \begin{pmatrix} 2\\0 \end{pmatrix} + 2 \begin{pmatrix} 1\\1 \end{pmatrix}.$$

The first two columns are linearly independent since $\lambda_1 = 0$ and $\lambda_2 = 0$ are the only solutions to the equation

$$\lambda_1 \begin{pmatrix} 2\\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1\\ 1 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}.$$

Therefore, we have $\operatorname{rank}(\boldsymbol{X}) = 2$, i.e., \boldsymbol{X} does not have a full column rank.

Some useful properties are

- i) $\operatorname{rank}(\boldsymbol{A}) \leq \min(k, m)$
- ii) $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}')$
- iii) $\operatorname{rank}(\boldsymbol{A}\boldsymbol{B}) = \min(\operatorname{rank}(\boldsymbol{A}), \operatorname{rank}(\boldsymbol{B}))$
- iv) $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}'\mathbf{A}) = \operatorname{rank}(\mathbf{A}\mathbf{A}').$

We can use the qr() function to extract the rank in R. Let's compute the rank of the matrices

$$\boldsymbol{A} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 9 & 1 \\ 0 & 11 & 5 \end{pmatrix},$$

 $B = I_3$, and X from the example above:

A = matrix(c(1,3,0,2,9,11,3,1,5), nrow=3) qr(A)\$rank

[1] 3

B = matrix(c(1,1,1,1,1,1,1,1,1), nrow=3)
qr(B)\$rank

[1] 1

X = matrix(c(2,0,1,1,4,2), ncol=3)
qr(X)\$rank

[1] 2

3.3 Nonsingular matrix

A square $k \times k$ matrix \boldsymbol{A} is called **nonsingular** if it has full rank, i.e., rank $(\boldsymbol{A}) = k$. Conversely, \boldsymbol{A} is called **singular** if it does not have full rank, i.e., rank $(\boldsymbol{A}) < k$.

3.4 Determinant

Consider a square $k \times k$ matrix \mathbf{A} . The determinant det (\mathbf{A}) is a measure of the volume of the geometric object formed by the columns of \mathbf{A} (a parallelogram for k = 2, a parallelepiped for k = 3, a hyper-parallelepiped for k > 3). For 2×2 matrices, the determinant is easy to calculate:

$$\boldsymbol{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad \det(\boldsymbol{A}) = ad - bc.$$

If A is triangular (upper or lower), the determinant is the product of the diagonal entries, i.e., $det(A) = \prod_{i=1}^{k} a_{ii}$. Hence, Gaussian elimination can be used to compute the determinant by transforming the matrix to a triangular one. The exact definition of the determinant is technical and of little importance to us. A useful relation is the following:

$$det(\mathbf{A}) = 0 \quad \Leftrightarrow \quad \mathbf{A} \text{ is singular}$$
$$det(\mathbf{A}) \neq 0 \quad \Leftrightarrow \quad \mathbf{A} \text{ is nonsingular}.$$

In R, we have the det() function to compute the determinant:

det(A)

[1] 103

det(B)

[1] 0

Since $det(\mathbf{A}) \neq 0$ and $det(\mathbf{B}) = 0$, we conclude that \mathbf{A} is nonsingular and \mathbf{B} is singular.

3.5 Inverse matrix

The inverse A^{-1} of a square $k \times k$ matrix A is defined by the property

$$\boldsymbol{A}\boldsymbol{A}^{-1} = \boldsymbol{A}^{-1}\boldsymbol{A} = \boldsymbol{I}_k.$$

When multiplied from the left or the right, the inverse matrix produces the identity matrix. The inverse exists if and only if \boldsymbol{A} is nonsingular, i.e., $\det(\boldsymbol{A}) \neq 0$. Therefore, a nonsingular matrix is also called **invertible matrix**. Note that only square matrices can be inverted.

For 2×2 matrices, there exists a simple formula:

$$oldsymbol{A}^{-1} = rac{1}{\det(oldsymbol{A})} \begin{pmatrix} d & -b \ -c & a \end{pmatrix}$$
,

where $det(\mathbf{A}) = ad-bc$. We swap the main diagonal elements, reverse the sign of the off-diagonal elements, and divide all entries by the determinant. *Example:*

$$\boldsymbol{A} = \begin{pmatrix} 5 & 6 \\ 1 & 2 \end{pmatrix}$$

We have $det(A) = ad - bc = 5 \cdot 2 - 6 \cdot 1 = 4$, and

$$\boldsymbol{A}^{-1} = \frac{1}{4} \cdot \begin{pmatrix} 2 & -6 \\ -1 & 5 \end{pmatrix}.$$

Indeed, A^{-1} is the inverse of A since

$$\boldsymbol{A}\boldsymbol{A}^{-1} = \begin{pmatrix} 5 & 6 \\ 1 & 2 \end{pmatrix} \cdot \frac{1}{4} \cdot \begin{pmatrix} 2 & -6 \\ -1 & 5 \end{pmatrix} = \frac{1}{4} \cdot \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \boldsymbol{I}_2.$$

One way to calculate the inverse of higher order square matrices is to solve equation $AA^{-1} = I$ with Gaussian elimination. R can compute the inverse matrix quickly using the function solve():

solve(A) #inverse if A

[,1] [,2] [,3] [1,] 0.3300971 0.22330097 -0.24271845 [2,] -0.1456311 0.04854369 0.07766990 [3,] 0.3203883 -0.10679612 0.02912621 We have the following relationship between invertibility, rank, and determinant of a square matrix A:

 \boldsymbol{A} is nonsingular

- \Leftrightarrow all columns of **A** are linearly independent
- $\Leftrightarrow \ \ \, \pmb{A} \ \, \text{has full column rank}$
- \Leftrightarrow the determinant is nonzero $(\det(\mathbf{A}) \neq 0)$.

Similarly,

- \boldsymbol{A} is singular
- \Leftrightarrow **A** has linearly dependent columns
- $\Leftrightarrow \ \ \, \pmb{A} \text{ does not have full rank}$
- \Leftrightarrow the determinant is zero (det(A) = 0).

Below you will find some important properties for nonsingular matrices:

i) $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$ ii) $(\mathbf{A}')^{-1} = (\mathbf{A}^{-1})'$ iii) $(\lambda \mathbf{A})^{-1} = \frac{1}{\lambda} \mathbf{A}^{-1}$ for any $\lambda \neq 0$ iv) $\det(\mathbf{A}^{-1}) = \frac{1}{\det(\mathbf{A})}$ v) $(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$ vi) $(\mathbf{A}\mathbf{B}\mathbf{C})^{-1} = \mathbf{C}^{-1}\mathbf{B}^{-1}\mathbf{A}^{-1}$ vii) If \mathbf{A} is symmetric, then \mathbf{A}^{-1} is symmetric.

4 Advanced concepts

4.1 Trace

The **trace** of a $k \times k$ square matrix **A** is the sum of the diagonal entries:

$$\operatorname{tr}(\boldsymbol{A}) = \sum_{i=1}^{n} a_{ii}$$

Example:

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 9 & 1 \\ 0 & 11 & 5 \end{pmatrix} \implies \operatorname{tr}(\mathbf{A}) = 1 + 9 + 5 = 15$$

In Rwe have

```
A = matrix(c(1,3,0,2,9,11,3,1,5), nrow=3)
sum(diag(A)) #trace = sum of diagonal entries
```

[1] 15

The following properties hold for square matrices A and B and scalars λ :

i) $\operatorname{tr}(\lambda \boldsymbol{A}) = \lambda \operatorname{tr}(\boldsymbol{A})$ ii) $\operatorname{tr}(\boldsymbol{A} + \boldsymbol{B}) = \operatorname{tr}(\boldsymbol{A}) + \operatorname{tr}(\boldsymbol{B})$ iii) $\operatorname{tr}(\boldsymbol{A}') = \operatorname{tr}(\boldsymbol{A})$ iv) $\operatorname{tr}(\boldsymbol{I}_k) = k$

For $\boldsymbol{A} \in \mathbb{R}^{k \times m}$ and $\boldsymbol{B} \in \mathbb{R}^{m \times k}$ we have

$$\operatorname{tr}(\boldsymbol{A}\boldsymbol{B}) = \operatorname{tr}(\boldsymbol{B}\boldsymbol{A}).$$

4.2 Idempotent matrix

The square matrix A is called **idempotent** if AA = A. The identity matrix is idempotent: $I_n I_n = I_n$. Another example is the matrix

$$\boldsymbol{A} = \begin{pmatrix} 4 & -1 \\ 12 & -3 \end{pmatrix}.$$

We have

$$AA = \begin{pmatrix} 4 & -1 \\ 12 & -3 \end{pmatrix} \begin{pmatrix} 4 & -1 \\ 12 & -3 \end{pmatrix}$$
$$= \begin{pmatrix} 16 - 12 & -4 + 3 \\ 48 - 36 & -12 + 9 \end{pmatrix}$$
$$= \begin{pmatrix} 4 & -1 \\ 12 & -3 \end{pmatrix} = A.$$

4.3 Eigendecomposition

4.3.1 Eigenvalues

An **eigenvalue** λ of a $k \times k$ square matrix is a solution to the equation

$$\det(\lambda \boldsymbol{I}_k - \boldsymbol{A}) = 0.$$

The function $f(\lambda) = \det(\lambda I_k - A)$ has exactly k roots so that $\det(\lambda I_k - A) = 0$ has exactly k solutions. The solutions $\lambda_1, \ldots, \lambda_k$ are the k eigenvalues of A.

Most applications of eigenvalues in econometrics concern symmetric matrices. In this case, all eigenvalues are real-valued. In the case of non-symmetric matrices, some eigenvalues may be complex-valued.

Useful properties of the eigenvalues of a symmetric $k \times k$ matrix are:

- i) $\det(\boldsymbol{A}) = \lambda_1 \cdot \ldots \cdot \lambda_k$
- ii) $\operatorname{tr}(\boldsymbol{A}) = \lambda_1 + \ldots + \lambda_k$
- iii) \boldsymbol{A} is nonsingular if and only if all eigenvalues are nonzero
- iv) **AB** and **BA** have the same eigenvalues.

4.3.2 Eigenvectors

If λ_i is an eigenvalue of \mathbf{A} , then $\lambda_i \mathbf{I}_k - \mathbf{A}$ is singular, which implies that there exists a linear combination vector \mathbf{v}_i with $(\lambda_i \mathbf{I}_k - \mathbf{A})\mathbf{v}_i = \mathbf{0}$. Equivalently,

$$Av_i = \lambda_i v_i,$$

which can be solved by Gaussian elimination. It is convenient to normalize any solution such that $v'_i v_i = 1$. The solutions v_1, \ldots, v_k are called eigenvectors of A to corresponding eigenvalues $\lambda_1, \ldots, \lambda_k$.

4.3.3 Spectral decomposition

If **A** is symmetric, then v_1, \ldots, v_k are pairwise orthogonal (i.e., $v'_i v_j = 0$ for $i \neq j$). Let $V = (v_1 \ldots v_k)$ be the $k \times k$ matrix of eigenvectors and let $\mathbf{\Lambda} = \text{diag}(\lambda_1, \ldots, \lambda_k)$ be the $k \times k$ diagonal matrix with the eigenvalues on the main diagonal. Then, we can write

$$A = V\Lambda V',$$

which is called the **spectral decomposition** of A. The matrix of eigenvalues can be written as $\Lambda = V'AV$.

4.3.4 Eigendecomposition in R

The function eigen() computes the eigenvalues and corresponding eigenvectors.

B=t(A)%*%A B #A'A is symmetric

	[,1]	[,2]	[,3]
[1,]	10	29	6
[2,]	29	206	70
[3,]	6	70	35

eigen(B) #eigenvalues and eigenvector matrix

eigen() decomposition \$values [1] 234.827160 12.582227 3.590613 \$vectors [,1] [,2] [,3] [1,] -0.1293953 -0.5312592 0.8372697 [2,] -0.9346164 -0.2167553 -0.2819739 [3,] -0.3312839 0.8190121 0.4684764

4.4 Definite matrix

The $k \times k$ square matrix **A** is called **positive definite** if

c'Ac > 0

holds for all nonzero vectors $\boldsymbol{c} \in \mathbb{R}^k$. If

 $c'Ac \ge 0$

for all vectors $\mathbf{c} \in \mathbb{R}^k$, the matrix is called **positive semi-definite**. Analogously, \mathbf{A} is called **negative definite** if $\mathbf{c}'\mathbf{A}\mathbf{c} < 0$ and **negative semi-definite** if $\mathbf{c}'\mathbf{A}\mathbf{c} \leq 0$ for all nonzero vectors $\mathbf{c} \in \mathbb{R}^k$. A matrix that is neither positive semi-definite nor negative semi-definite is called **indefinite**

The definiteness property of a symmetric matrix \boldsymbol{A} can be determined using its eigenvalues:

- i) **A** is positive definite \Leftrightarrow all eigenvalues of **A** are strictly positive
- ii) A is negative definite \Leftrightarrow all eigenvalues of A are strictly negative
- iii) A is positive semi-definite \Leftrightarrow all eigenvalues of A are non-negative
- iv) **A** is negative semi-definite \Leftrightarrow all eigenvalues of **A** are non-positive

eigen(B)\$values #B is positive definite (all eigenvalues positive)

[1] 234.827160 12.582227 3.590613

The matrix analog of a positive or negative number (scalar) is a positive definite or negative definite matrix. Therefore, we use the notation

- i) $\boldsymbol{A} > 0$ if \boldsymbol{A} is positive definite
- ii) $\boldsymbol{A} < 0$ if \boldsymbol{A} is negative definite
- iii) $\boldsymbol{A} \ge 0$ if \boldsymbol{A} is positive semi-definite
- iv) $\boldsymbol{A} \leq 0$ if \boldsymbol{A} is negative semi-definite

The notation A > B means that the matrix A - B is positive definite.

4.5 Cholesky decomposition

Any positive definite and symmetric matrix \boldsymbol{B} can be written as

$$B = PP'$$

where P is a lower triangular matrix with strictly positive diagonal entries $p_{jj} > 0$. This representation is called **Cholesky decomposition**. The matrix P is unique. For a 2 × 2 matrix B we have

$$\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} p_{11} & 0 \\ p_{21} & p_{22} \end{pmatrix} \begin{pmatrix} p_{11} & p_{21} \\ 0 & p_{22} \end{pmatrix}$$
$$= \begin{pmatrix} p_{11}^2 & p_{11}p_{21} \\ p_{11}p_{21} & p_{21}^2 + p_{22}^2 \end{pmatrix},$$

which implies $p_{11} = \sqrt{b_{11}}$, $p_{21} = b_{21}/p_{11}$, and $p_{22} = \sqrt{b_{22} - p_{21}^2}$. For a 3 × 3 matrix we obtain

$$\begin{pmatrix} b_{11} & b_{12} & b_{31} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} = \begin{pmatrix} p_{11} & 0 & 0 \\ p_{21} & p_{22} & 0 \\ p_{31} & p_{32} & p_{33} \end{pmatrix} \begin{pmatrix} p_{11} & p_{21} & p_{31} \\ 0 & p_{22} & p_{32} \\ 0 & 0 & p_{33} \end{pmatrix} \\ = \begin{pmatrix} p_{11}^2 & p_{11}p_{21} & p_{11}p_{31} \\ p_{11}p_{21} & p_{21}^2 + p_{22}^2 & p_{21}p_{31} + p_{22}p_{32} \\ p_{11}p_{31} & p_{21}p_{31} + p_{22}p_{32} & p_{31}^2 + p_{32}^2 + p_{33}^2 \end{pmatrix},$$

which implies

$$p_{11} = \sqrt{b_{11}}, \quad p_{21} = \frac{b_{21}}{p_{11}}, \quad p_{31} = \frac{b_{31}}{p_{11}}, \quad p_{22} = \sqrt{b_{22} - p_{21}^2},$$
$$p_{32} = \frac{b_{32} - p_{21}p_{31}}{p_{22}}, \quad p_{33} = \sqrt{b_{33} - p_{31}^2 - p_{32}^2}.$$

Let's compute the Cholesky decomposition of

$$\boldsymbol{B} = \begin{pmatrix} 1 & -0.5 & 0.6 \\ -0.5 & 1 & 0.25 \\ 0.6 & 0.25 & 1 \end{pmatrix}$$

using the R function chol():

B = matrix(c(1, -0.5, 0.6, -0.5, 1, 0.25, 0.6, 0.25, 1), ncol=3) chol(B)

	[,1]	[,2]	[,3]
[1,]	1	-0.500000	0.600000
[2,]	0	0.8660254	0.6350853
[3,]	0	0.0000000	0.4864840

4.6 Vectorization

The vectorization operator vec() stacks the matrix entries column-wise into a large vector. The vectorized $k \times m$ matrix A is the $km \times 1$ vector

 $\operatorname{vec}(\mathbf{A}) = (a_{11}, \ldots, a_{k1}, a_{12}, \ldots, a_{k2}, \ldots, a_{1m}, \ldots, a_{km})'.$

c(A) #vectorize the matrix A

[1] 1 3 0 2 9 11 3 1 5

4.7 Kronecker product

The **Kronecker product** \otimes multiplies each element of the left-hand side matrix with the entire matrix on the right-hand side. For a $k \times m$ matrix \boldsymbol{A} and a $r \times s$ matrix \boldsymbol{B} , we get the $kr \times ms$ matrix

$$A \otimes B = \begin{pmatrix} a_{11}\boldsymbol{B} & \dots & a_{1m}\boldsymbol{B} \\ \vdots & & \vdots \\ a_{k1}\boldsymbol{B} & \dots & a_{km}\boldsymbol{B} \end{pmatrix},$$

where each entry $a_{ij}\boldsymbol{B}$ is a $r \times s$ matrix.

A %x% B #Kronecker product in R

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [1,] 1.0 -0.50 0.60 2.0 -1.00 1.20 3.0 -1.50 1.80 [2,] -0.5 1.00 0.25 -1.0 2.00 0.50 -1.5 3.00 0.75 [3,] 0.6 0.25 1.00 1.2 0.50 2.00 1.8 0.75 3.00 [4,] 3.0 -1.50 1.80 9.0 -4.50 5.40 1.0 -0.50 0.60 [5,] -1.5 3.00 0.75 -4.5 9.00 2.25 -0.5 1.00 0.25

[6,]	1.8	0.75	3.00	5.4	2.25	9.00	0.6	0.25	1.00
[7,]	0.0	0.00	0.00	11.0	-5.50	6.60	5.0	-2.50	3.00
[8,]	0.0	0.00	0.00	-5.5	11.00	2.75	-2.5	5.00	1.25
[9,]	0.0	0.00	0.00	6.6	2.75	11.00	3.0	1.25	5.00

4.8 Vector and matrix norm

A norm $\|\cdot\|$ of a vector or a matrix is a measure of distance from the origin. The most commonly used norms are the Euclidean vector norm

$$\|\boldsymbol{a}\| = \sqrt{\boldsymbol{a}'\boldsymbol{a}} = \sqrt{\sum_{i=1}^k a_i^2}$$

for $\boldsymbol{a} \in \mathbb{R}^k$, and the Frobenius matrix norm

$$\|\boldsymbol{A}\| = \sqrt{\sum_{i=1}^{k} \sum_{j=1}^{m} a_{ij}^2}$$

for $\boldsymbol{A} \in \mathbb{R}^{k \times m}$.

A norm satisfies the following properties:

- i) $\|\lambda A\| = |\lambda| \|A\|$ for any scalar λ (absolute homogeneity)
- ii) $\|\boldsymbol{A} + \boldsymbol{B}\| \leq \|\boldsymbol{A}\| + \|\boldsymbol{B}\|$ (triangle inequality)
- iii) $\|\boldsymbol{A}\| = 0$ implies $\boldsymbol{A} = \boldsymbol{0}$ (definiteness)

5 Matrix calculus

Let $f(\beta_1, \ldots, \beta_k) = f(\boldsymbol{\beta})$ be a twice-differential real-valued function that depends on some vector $\boldsymbol{\beta} = (\beta_1, \ldots, \beta_k)'$. Examples that frequently appear in econometrics are functions of the inner product form $f(\boldsymbol{\beta}) = \boldsymbol{a}' \boldsymbol{\beta}$, where $\boldsymbol{a} \in \mathbb{R}^k$, and functions of the sandwich form $f(\boldsymbol{\beta}) = \boldsymbol{\beta}' \boldsymbol{A} \boldsymbol{\beta}$, where $\boldsymbol{A} \in \mathbb{R}^{k \times k}$.

5.1 Gradient

The first derivatives vector or gradient is

$$\frac{\partial f(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \begin{pmatrix} \frac{\partial f(\boldsymbol{\beta})}{\partial \beta_1} \\ \vdots \\ \frac{\partial f(\boldsymbol{\beta})}{\partial \beta_k} \end{pmatrix}$$

If the gradient is evaluated at some particular value $\boldsymbol{\beta} = \boldsymbol{b}$, we write

$$\frac{\partial f}{\partial \boldsymbol{\beta}}(\boldsymbol{b})$$

Useful properties for inner product and sandwich forms are

(i)
$$\frac{\partial (\boldsymbol{a}'\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \boldsymbol{a}$$

(ii) $\frac{\partial (\boldsymbol{\beta}'\boldsymbol{A}\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = (\boldsymbol{A} + \boldsymbol{A}')\boldsymbol{\beta}.$

5.2 Hessian

The second derivatives matrix or Hessian is the $k \times k$ matrix

$$\frac{\partial^2 f(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}'} = \begin{pmatrix} \frac{\partial^2 f(\boldsymbol{\beta})}{\partial \beta_1 \partial \beta_1} & \cdots & \frac{\partial^2 f(\boldsymbol{\beta})}{\partial \beta_k \partial \beta_1} \\ \vdots & & \vdots \\ \frac{\partial^2 f(\boldsymbol{\beta})}{\partial \beta_1 \partial \beta_k} & \cdots & \frac{\partial^2 f(\boldsymbol{\beta})}{\partial \beta_k \partial \beta_k} \end{pmatrix}.$$

If the Hessian is evaluated at some particular value $\boldsymbol{\beta} = \boldsymbol{b}$, we write

$$\frac{\partial^2 f}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}'}(\boldsymbol{b})$$

The Hessian is symmetric. Each column of the Hessian is the derivative of the components of the gradient for the corresponding variable in β' :

$$\frac{\partial^2 f(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}'} = \frac{\partial(\partial f(\boldsymbol{\beta})/\partial \boldsymbol{\beta})}{\partial \boldsymbol{\beta}'}$$
$$= \left[\frac{\partial(\partial f(\boldsymbol{\beta})/\partial \boldsymbol{\beta})}{\partial \beta_1} \frac{\partial(\partial f(\boldsymbol{\beta})/\partial \boldsymbol{\beta})}{\partial \beta_2} \dots \frac{\partial(\partial f(\boldsymbol{\beta})/\partial \boldsymbol{\beta})}{\partial \beta_n} \right]$$

The Hessian of a sandwich form function is

$$rac{\partial^2(oldsymbol{eta}'oldsymbol{A}oldsymbol{eta})}{\partialoldsymbol{eta}\partialoldsymbol{eta}'}=oldsymbol{A}+oldsymbol{A}'.$$

5.3 Optimization

Recall the *first-order* (necessary) and *second-order* (sufficient) conditions for optimum (maximum or minimum) in the univariate case:

- First-order condition: the first derivative evaluated at the optimum is zero.
- Second-order condition: the second derivative at the optimum is negative for a maximum and positive for a minimum.

Similarly, we formulate first and second-order conditions for a function $f(\boldsymbol{\beta})$. The **first-order** condition for an optimum (maximum or minimum) at **b** is

$$\frac{\partial f}{\partial \boldsymbol{\beta}}(\boldsymbol{b}) = \boldsymbol{0}.$$

The second-order condition is

$$\frac{\partial^2 f}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}'}(\boldsymbol{b}) > 0 \quad \text{for a minimum at } \boldsymbol{b},$$
$$\frac{\partial^2 f}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}'}(\boldsymbol{b}) < 0 \quad \text{for a maximum at } \boldsymbol{b}.$$

Recall that, in the context of matrices, the notation "> 0" means positive definite, and "< 0" means negative definite.

6 Problems

Problem 1

Consider the matrix

$$\boldsymbol{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

- a) Determine A'. Is A symmetric?
- b) Is **A** idempotent?
- c) Compute the determinant and the rank. Is **A** nonsingular?
- d) Compute the inverse.
- e) Compute the trace.

Problem 2

a) Let AB = C, where

$$\boldsymbol{A} = \begin{pmatrix} 1 & 0 \\ 2 & 2 \end{pmatrix}, \quad \boldsymbol{C} = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}.$$

Compute **B**.

- b) $\boldsymbol{\delta}$ and $\boldsymbol{\gamma}$ are $c \times 1$ vectors, \boldsymbol{X} is a $d \times c$ matrix, and \boldsymbol{Y} is a $c \times d$ matrix. Determine the orders of $\boldsymbol{X}\boldsymbol{Y}, \boldsymbol{Y}\boldsymbol{X}, \boldsymbol{\gamma}'\boldsymbol{\gamma}, \boldsymbol{\gamma}\boldsymbol{\gamma}'$, and $\boldsymbol{\delta}'\boldsymbol{Y}\boldsymbol{X}\boldsymbol{\gamma}$. Under which conditions do the expressions \boldsymbol{Y}^{-1} and $\boldsymbol{\delta}'\boldsymbol{Y}\boldsymbol{X} + \boldsymbol{\gamma}'\boldsymbol{\gamma}$ exist?
- c) Compute $tr(\lambda \mathbf{R'R})$ for $\lambda \in \mathbb{R}$ and

$$\boldsymbol{R} = \begin{pmatrix} \frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}.$$

Problem 3

Let A be nonsingular. Simplify the expression

$$\left(\frac{1}{\sqrt{2}}\boldsymbol{A}^{-1}\left(\frac{1}{\sqrt{2}}\boldsymbol{A}''+\frac{\sqrt{2}}{2}\boldsymbol{A}\right)\right).$$

Problem 4

Consider the $n \times k$ matrix X with rank(X) = k. Moreover, let $P = X(X'X)^{-1}X'$, and let $M = I_n - P$

- a) Determine the order of the following matrices: $I_n, X'X, P, M$
- b) Which matrices from a) are symmetric?
- c) Which matrices from a) are idempotent?
- d) Compute the trace of I_n and P.

Problem 5

Let X be a $n \times k$ matrix. Show that X'X is positive semi-definite. Under which condition is X'X positive definite?

Problem 6

Let $\boldsymbol{y} \in \mathbb{R}^n$, \boldsymbol{X} be a $n \times k$ matrix, and $\boldsymbol{\beta} \in \mathbb{R}^k$. Compute the derivatives

$$rac{\partial f(oldsymbol{eta})}{\partialoldsymbol{eta}}, \quad rac{\partial^2 f(oldsymbol{eta})}{\partialoldsymbol{eta}\partialoldsymbol{eta}'},$$

for the function $f(\boldsymbol{\beta}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})'(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}).$

6.1 Solutions

Solutions to the problems are available here (unfortunately only in German so far)