6 Problems
Problem 1
Consider the matrix \[ \boldsymbol A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}. \]
- Determine \(\boldsymbol A'\). Is \(\boldsymbol A\) symmetric?
- Is \(\boldsymbol A\) idempotent?
- Compute the determinant and the rank. Is \(\boldsymbol A\) nonsingular?
- Compute the inverse.
- Compute the trace.
Problem 2
- Let \(\boldsymbol A \boldsymbol B = \boldsymbol C\), where \[ \boldsymbol A = \begin{pmatrix} 1 & 0 \\ 2 & 2 \end{pmatrix}, \quad \boldsymbol C = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}. \] Compute \(\boldsymbol B\).
- \(\boldsymbol \delta\) and \(\boldsymbol \gamma\) are \(c \times 1\) vectors, \(\boldsymbol X\) is a \(d \times c\) matrix, and \(\boldsymbol Y\) is a \(c \times d\) matrix. Determine the orders of \(\boldsymbol X \boldsymbol Y\), \(\boldsymbol Y \boldsymbol X\), \(\boldsymbol \gamma' \boldsymbol \gamma\), \(\boldsymbol \gamma \boldsymbol \gamma'\), and \(\boldsymbol \delta' \boldsymbol Y \boldsymbol X \boldsymbol \gamma\). Under which conditions do the expressions \(\boldsymbol Y^{-1}\) and \(\boldsymbol \delta' \boldsymbol Y \boldsymbol X + \boldsymbol \gamma' \boldsymbol \gamma\) exist?
- Compute \(\mathop{\mathrm{tr}}(\lambda \boldsymbol R' \boldsymbol R)\) for \(\lambda \in \mathbb R\) and \[ \boldsymbol R = \begin{pmatrix} \frac{1}{4} & \frac{\sqrt 3}{4} \\ \frac{\sqrt 3}{4} & \frac{3}{4} \end{pmatrix}. \]
Problem 3
Let \(\boldsymbol A\) be nonsingular. Simplify the expression \[ \bigg( \frac{1}{\sqrt 2} \boldsymbol A^{-1} \bigg( \frac{1}{\sqrt 2} \boldsymbol A'' + \frac{\sqrt 2}{2} \boldsymbol A \bigg) \bigg). \]
Problem 4
Consider the \(n \times k\) matrix \(\boldsymbol X\) with \(\mathop{\mathrm{rank}}(\boldsymbol X) = k\). Moreover, let \(\boldsymbol P = \boldsymbol X (\boldsymbol X' \boldsymbol X)^{-1} \boldsymbol X'\), and let \(\boldsymbol M = \boldsymbol I_n - \boldsymbol P\)
- Determine the order of the following matrices: \(\boldsymbol I_n\), \(\boldsymbol X' \boldsymbol X\), \(\boldsymbol P\), \(\boldsymbol M\)
- Which matrices from a) are symmetric?
- Which matrices from a) are idempotent?
- Compute the trace of \(\boldsymbol I_n\) and \(\boldsymbol P\).
Problem 5
Let \(\boldsymbol X\) be a \(n \times k\) matrix. Show that \(\boldsymbol X' \boldsymbol X\) is positive semi-definite. Under which condition is \(\boldsymbol X' \boldsymbol X\) positive definite?
Problem 6
Let \(\boldsymbol y \in \mathbb R^n\), \(\boldsymbol X\) be a \(n \times k\) matrix, and \(\boldsymbol \beta \in \mathbb R^k\). Compute the derivatives \[ \frac{\partial f(\boldsymbol \beta)}{\partial \boldsymbol \beta}, \quad \frac{\partial^2 f(\boldsymbol \beta)}{\partial \boldsymbol \beta \partial \boldsymbol \beta'}, \] for the function \(f(\boldsymbol \beta) = (\boldsymbol y - \boldsymbol X \boldsymbol \beta)'(\boldsymbol y - \boldsymbol X \boldsymbol \beta)\).
6.1 Solutions
Solutions to the problems are available here (unfortunately only in German so far)